Goto

Collaborating Authors

 Niu, Zhenxing


Towards Aligned Data Forgetting via Twin Machine Unlearning

arXiv.org Artificial Intelligence

Modern privacy regulations have spurred the evolution of machine unlearning, a technique enabling a trained model to efficiently forget specific training data. In prior unlearning methods, the concept of "data forgetting" is often interpreted and implemented as achieving zero classification accuracy on such data. Nevertheless, the authentic aim of machine unlearning is to achieve alignment between the unlearned model and the gold model, i.e., encouraging them to have identical classification accuracy. On the other hand, the gold model often exhibits non-zero classification accuracy due to its generalization ability. To achieve aligned data forgetting, we propose a Twin Machine Unlearning (TMU) approach, where a twin unlearning problem is defined corresponding to the original unlearning problem. Consequently, the generalization-label predictor trained on the twin problem can be transferred to the original problem, facilitating aligned data forgetting. Comprehensive empirical experiments illustrate that our approach significantly enhances the alignment between the unlearned model and the gold model.


Efficient LLM-Jailbreaking by Introducing Visual Modality

arXiv.org Artificial Intelligence

This paper focuses on jailbreaking attacks against large language models (LLMs), eliciting them to generate objectionable content in response to harmful user queries. Unlike previous LLM-jailbreaks that directly orient to LLMs, our approach begins by constructing a multimodal large language model (MLLM) through the incorporation of a visual module into the target LLM. Subsequently, we conduct an efficient MLLM-jailbreak to generate jailbreaking embeddings embJS. Finally, we convert the embJS into text space to facilitate the jailbreaking of the target LLM. Compared to direct LLM-jailbreaking, our approach is more efficient, as MLLMs are more vulnerable to jailbreaking than pure LLM. Additionally, to improve the attack success rate (ASR) of jailbreaking, we propose an image-text semantic matching scheme to identify a suitable initial input. Extensive experiments demonstrate that our approach surpasses current state-of-the-art methods in terms of both efficiency and effectiveness. Moreover, our approach exhibits superior cross-class jailbreaking capabilities.


Jailbreaking Attack against Multimodal Large Language Model

arXiv.org Artificial Intelligence

This paper focuses on jailbreaking attacks against multi-modal large language models (MLLMs), seeking to elicit MLLMs to generate objectionable responses to harmful user queries. A maximum likelihood-based algorithm is proposed to find an \emph{image Jailbreaking Prompt} (imgJP), enabling jailbreaks against MLLMs across multiple unseen prompts and images (i.e., data-universal property). Our approach exhibits strong model-transferability, as the generated imgJP can be transferred to jailbreak various models, including MiniGPT-v2, LLaVA, InstructBLIP, and mPLUG-Owl2, in a black-box manner. Moreover, we reveal a connection between MLLM-jailbreaks and LLM-jailbreaks. As a result, we introduce a construction-based method to harness our approach for LLM-jailbreaks, demonstrating greater efficiency than current state-of-the-art methods. The code is available here. \textbf{Warning: some content generated by language models may be offensive to some readers.}


Unlimited Neighborhood Interaction for Heterogeneous Trajectory Prediction

arXiv.org Artificial Intelligence

Understanding complex social interactions among agents is a key challenge for trajectory prediction. Most existing methods consider the interactions between pairwise traffic agents or in a local area, while the nature of interactions is unlimited, involving an uncertain number of agents and non-local areas simultaneously. Besides, they treat heterogeneous traffic agents the same, namely those among agents of different categories, while neglecting people's diverse reaction patterns toward traffic agents in ifferent categories. To address these problems, we propose a simple yet effective Unlimited Neighborhood Interaction Network (UNIN), which predicts trajectories of heterogeneous agents in multiple categories. Specifically, the proposed unlimited neighborhood interaction module generates the fused-features of all agents involved in an interaction simultaneously, which is adaptive to any number of agents and any range of interaction area. Meanwhile, a hierarchical graph attention module is proposed to obtain category-to-category interaction and agent-to-agent interaction. Finally, parameters of a Gaussian Mixture Model are estimated for generating the future trajectories. Extensive experimental results on benchmark datasets demonstrate a significant performance improvement of our method over the state-of-the-art methods.