Goto

Collaborating Authors

 Niu, Tong


JudgeRank: Leveraging Large Language Models for Reasoning-Intensive Reranking

arXiv.org Artificial Intelligence

Accurate document retrieval is crucial for the success of retrieval-augmented generation (RAG) applications, including open-domain question answering and code completion. While large language models (LLMs) have been employed as dense encoders or listwise rerankers in RAG systems, they often struggle with reasoning-intensive tasks because they lack nuanced analysis when judging document relevance. To address this limitation, we introduce JudgeRank, a novel agentic reranker that emulates human cognitive processes when assessing document relevance. Our approach consists of three key steps: (1) query analysis to identify the core problem, (2) document analysis to extract a query-aware summary, and (3) relevance judgment to provide a concise assessment of document relevance. We evaluate JudgeRank on the reasoning-intensive BRIGHT benchmark, demonstrating substantial performance improvements over first-stage retrieval methods and outperforming other popular reranking approaches. In addition, JudgeRank performs on par with fine-tuned state-of-the-art rerankers on the popular BEIR benchmark, validating its zero-shot generalization capability. Through comprehensive ablation studies, we demonstrate that JudgeRank's performance generalizes well across LLMs of various sizes while ensembling them yields even more accurate reranking than individual models.


Improving LLM Reasoning through Scaling Inference Computation with Collaborative Verification

arXiv.org Artificial Intelligence

Despite significant advancements in the general capability of large language models (LLMs), they continue to struggle with consistent and accurate reasoning, especially in complex tasks such as mathematical and code reasoning. One key limitation is that LLMs are trained primarily on correct solutions, reducing their ability to detect and learn from errors, which hampers their ability to reliably verify and rank outputs. To address this, we scale up the inference-time computation by generating multiple reasoning paths and employing verifiers to assess and rank the generated outputs by correctness. To facilitate this, we introduce a comprehensive dataset consisting of correct and incorrect solutions for math and code tasks, generated by multiple LLMs. This diverse set of solutions enables verifiers to more effectively distinguish and rank correct answers from erroneous outputs. The training methods for building verifiers were selected based on an extensive comparison of existing approaches. Moreover, to leverage the unique strengths of different reasoning strategies, we propose a novel collaborative method integrating Chain-of-Thought (CoT) and Program-of-Thought (PoT) solutions for verification. CoT provides a clear, step-by-step reasoning process that enhances interpretability, while PoT, being executable, offers a precise and error-sensitive validation mechanism. By taking both of their strengths, our approach significantly improves the accuracy and reliability of reasoning verification. Our verifiers, Math-Rev and Code-Rev, demonstrate substantial performance gains to existing LLMs, achieving state-of-the-art results on benchmarks such as GSM8k and MATH and even outperforming GPT-4o with Qwen-72B-Instruct as the reasoner.


RAM2C: A Liberal Arts Educational Chatbot based on Retrieval-augmented Multi-role Multi-expert Collaboration

arXiv.org Artificial Intelligence

Recently, many studies focus on utilizing large language models (LLMs) into educational dialogues. Especially, within liberal arts dialogues, educators must balance \textbf{H}umanized communication, \textbf{T}eaching expertise, and \textbf{S}afety-ethics (\textbf{HTS}), besides the subject knowledge itself. However, due to collecting massive amounts of HTS-compliant teaching dialogues from real world as training corpus is expensive, the outputs of existing LLMs in teaching dialogues fall short of human standards. To address this, we design a Retrieval-augmented Multi-role Multi-expert Collaboration (RAM2C) framework to automatically generate such dialogues data. Specifically, we first establish HTS-guided knowledge bases, encompassing three domain knowledge in teaching skills, psychology, and safety ethics. Then, RAM2C organizes LLMs, which are retrieval-augmented by the above different knowledge bases, into multi-experts groups with distinct roles to generate the HTS-compliant educational dialogues dataset. We then fine-tuned the LLMs using this dataset. Empirical evaluations indicate that RM2C-empowered LLMs excel in Chinese reading teaching, offering more personalized, and ethically safe teaching response, demonstrating RAM2C's practicality and high quality. We release the experiments at \hyperlink{https://github.com/ram2c/ram2c}{https://github.com/ram2c/ram2c}.


Solution-oriented Agent-based Models Generation with Verifier-assisted Iterative In-context Learning

arXiv.org Artificial Intelligence

Agent-based models (ABMs) stand as an essential paradigm for proposing and validating hypothetical solutions or policies aimed at addressing challenges posed by complex systems and achieving various objectives. This process demands labor-intensive endeavors and multidisciplinary expertise. Large language models (LLMs) encapsulating cross-domain knowledge and programming proficiency could potentially alleviate the difficulty of this process. However, LLMs excel in handling sequential information, making it challenging for analyzing the intricate interactions and nonlinear dynamics inherent in ABMs. Additionally, due to the lack of self-evaluation capability of LLMs, relying solely on LLMs is insufficient to effectively accomplish this process. In this paper, we present SAGE, a general solution-oriented ABM generation framework designed for automatic modeling and generating solutions for targeted problems. Unlike approaches reliant on expert handcrafting or resource-intensive neural network training, SAGE establishes a verifier-assisted iterative in-context learning process employing large language models (LLMs) to leverages their inherent cross-domain knowledge for tackling intricate demands from diverse domain scenarios. In SAGE, we introduce an semi-structured conceptual representation expliciting the intricate structures of ABMs and an objective representation to guide LLMs in modeling scenarios and proposing hypothetical solutions through in-context learning. To ensure the model executability and solution feasibility, SAGE devises a two-level verifier with chain-of-thought prompting tailored to the complex interactions and non-linear dynamics of ABMs, driving the iterative generation optimization. Moreover, we construct an evaluation dataset of solution-oriented ABMs from open sources.It contains practical models across various domains.


General Automatic Solution Generation of Social Problems

arXiv.org Artificial Intelligence

Given the escalating intricacy and multifaceted nature of contemporary social systems, manually generating solutions to address pertinent social issues has become a formidable task. In response to this challenge, the rapid development of artificial intelligence has spurred the exploration of computational methodologies aimed at automatically generating solutions. However, current methods for auto-generation of solutions mainly concentrate on local social regulations that pertain to specific scenarios. Here, we report an automatic social operating system (ASOS) designed for general social solution generation, which is built upon agent-based models, enabling both global and local analyses and regulations of social problems across spatial and temporal dimensions. ASOS adopts a hypergraph with extensible social semantics for a comprehensive and structured representation of social dynamics. It also incorporates a generalized protocol for standardized hypergraph operations and a symbolic hybrid framework that delivers interpretable solutions, yielding a balance between regulatory efficacy and function viability. To demonstrate the effectiveness of ASOS, we apply it to the domain of averting extreme events within international oil futures markets. By generating a new trading role supplemented by new mechanisms, ASOS can adeptly discern precarious market conditions and make front-running interventions for non-profit purposes. This study demonstrates that ASOS provides an efficient and systematic approach for generating solutions for enhancing our society.


Parameter-Efficient Detoxification with Contrastive Decoding

arXiv.org Artificial Intelligence

The field of natural language generation has witnessed significant advancements in recent years, including the development of controllable text generation techniques. However, controlling the attributes of the generated text remains a challenge, especially when aiming to avoid undesirable behavior such as toxicity. In this work, we introduce Detoxification Generator (DETOXIGEN), an inference-time algorithm that steers the generation away from unwanted styles. DETOXIGEN is an ensemble of a pre-trained language model (generator) and a detoxifier. The detoxifier is trained intentionally on the toxic data representative of the undesirable attribute, encouraging it to generate text in that style exclusively. During the actual generation, we use the trained detoxifier to produce undesirable tokens for the generator to contrast against at each decoding step. This approach directly informs the generator to avoid generating tokens that the detoxifier considers highly likely. We evaluate DETOXIGEN on the commonly used REALTOXICITYPROMPTS benchmark (Gehman et al., 2020) with various language models as generators. We find that it significantly outperforms previous approaches in detoxification metrics while not compromising on the generation quality. Moreover, the detoxifier is obtained by soft prompt-tuning using the same backbone language model as the generator. Hence, DETOXIGEN requires only a tiny amount of extra weights from the virtual tokens of the detoxifier to be loaded into GPU memory while decoding, making it a promising lightweight, practical, and parameter-efficient detoxification strategy.


DIVKNOWQA: Assessing the Reasoning Ability of LLMs via Open-Domain Question Answering over Knowledge Base and Text

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have exhibited impressive generation capabilities, but they suffer from hallucinations when solely relying on their internal knowledge, especially when answering questions that require less commonly known information. Retrieval-augmented LLMs have emerged as a potential solution to ground LLMs in external knowledge. Nonetheless, recent approaches have primarily emphasized retrieval from unstructured text corpora, owing to its seamless integration into prompts. When using structured data such as knowledge graphs, most methods simplify it into natural text, neglecting the underlying structures. Moreover, a significant gap in the current landscape is the absence of a realistic benchmark for evaluating the effectiveness of grounding LLMs on heterogeneous knowledge sources (e.g., knowledge base and text). To fill this gap, we have curated a comprehensive dataset that poses two unique challenges: (1) Two-hop multi-source questions that require retrieving information from both open-domain structured and unstructured knowledge sources; retrieving information from structured knowledge sources is a critical component in correctly answering the questions. (2) The generation of symbolic queries (e.g., SPARQL for Wikidata) is a key requirement, which adds another layer of challenge. Our dataset is created using a combination of automatic generation through predefined reasoning chains and human annotation. We also introduce a novel approach that leverages multiple retrieval tools, including text passage retrieval and symbolic language-assisted retrieval. Our model outperforms previous approaches by a significant margin, demonstrating its effectiveness in addressing the above-mentioned reasoning challenges.


XGen-7B Technical Report

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have become ubiquitous across various domains, transforming the way we interact with information and conduct research. However, most high-performing LLMs remain confined behind proprietary walls, hindering scientific progress. Most open-source LLMs, on the other hand, are limited in their ability to support longer sequence lengths, which is a key requirement for many tasks that require inference over an input context. To address this, we have trained XGen, a series of 7B parameter models on up to 8K sequence length for up to 1.5T tokens. We have also finetuned the XGen models on public-domain instructional data, creating their instruction-tuned counterparts (XGen-Inst). We open-source our models for both research advancements and commercial applications. Our evaluation on standard benchmarks shows that XGen models achieve comparable or better results when compared with state-of-the-art open-source LLMs. Our targeted evaluation on long sequence modeling tasks shows the benefits of our 8K-sequence models over 2K-sequence open-source LLMs.


Automatically Learning Data Augmentation Policies for Dialogue Tasks

arXiv.org Artificial Intelligence

Automatic data augmentation (AutoAugment) (Cubuk et al., 2019) searches for optimal perturbation policies via a controller trained using performance rewards of a sampled policy on the target task, hence reducing data-level model bias. While being a powerful algorithm, their work has focused on computer vision tasks, where it is comparatively easy to apply imperceptible perturbations without changing an image's semantic meaning. In our work, we adapt AutoAugment to automatically discover effective perturbation policies for natural language processing (NLP) tasks such as dialogue generation. We start with a pool of atomic operations that apply subtle semantic-preserving perturbations to the source inputs of a dialogue task (e.g., different POS-tag types of stopword dropout, grammatical errors, and paraphrasing). Next, we allow the controller to learn more complex augmentation policies by searching over the space of the various combinations of these atomic operations. Moreover, we also explore conditioning the controller on the source inputs of the target task, since certain strategies may not apply to inputs that do not contain that strategy's required linguistic features. Empirically, we demonstrate that both our input-agnostic and input-aware controllers discover useful data augmentation policies, and achieve significant improvements over the previous state-of-the-art, including trained on manually-designed policies.


A novel hybrid model based on multi-objective Harris hawks optimization algorithm for daily PM2.5 and PM10 forecasting

arXiv.org Machine Learning

High levels of air pollution may seriously affect people's living environment and even endanger their lives. In order to reduce air pollution concentrations, and warn the public before the occurrence of hazardous air pollutants, it is urgent to design an accurate and reliable air pollutant forecasting model. However, most previous research have many deficiencies, such as ignoring the importance of predictive stability, and poor initial parameters and so on, which have significantly effect on the performance of air pollution prediction. Therefore, to address these issues, a novel hybrid model is proposed in this study. Specifically, a powerful data preprocessing techniques is applied to decompose the original time series into different modes from low- frequency to high- frequency. Next, a new multi-objective algorithm called MOHHO is first developed in this study, which are introduced to tune the parameters of ELM model with high forecasting accuracy and stability for air pollution series prediction, simultaneously. And the optimized ELM model is used to perform the time series prediction. Finally, a scientific and robust evaluation system including several error criteria, benchmark models, and several experiments using six air pollutant concentrations time series from three cities in China is designed to perform a compressive assessment for the presented hybrid forecasting model. Experimental results indicate that the proposed hybrid model can guarantee a more stable and higher predictive performance compared to others, whose superior prediction ability may help to develop effective plans for air pollutant emissions and prevent health problems caused by air pollution.