Goto

Collaborating Authors

 Niu, Guanglin


Diffusion-based Hierarchical Negative Sampling for Multimodal Knowledge Graph Completion

arXiv.org Artificial Intelligence

Multimodal Knowledge Graph Completion (MMKGC) aims to address the critical issue of missing knowledge in multimodal knowledge graphs (MMKGs) for their better applications. However, both the previous MMGKC and negative sampling (NS) approaches ignore the employment of multimodal information to generate diverse and high-quality negative triples from various semantic levels and hardness levels, thereby limiting the effectiveness of training MMKGC models. Thus, we propose a novel Diffusion-based Hierarchical Negative Sampling (DHNS) scheme tailored for MMKGC tasks, which tackles the challenge of generating high-quality negative triples by leveraging a Diffusion-based Hierarchical Embedding Generation (DiffHEG) that progressively conditions on entities and relations as well as multimodal semantics. Furthermore, we develop a Negative Triple-Adaptive Training (NTAT) strategy that dynamically adjusts training margins associated with the hardness level of the synthesized negative triples, facilitating a more robust and effective learning procedure to distinguish between positive and negative triples. Extensive experiments on three MMKGC benchmark datasets demonstrate that our framework outperforms several state-of-the-art MMKGC models and negative sampling techniques, illustrating the effectiveness of our DHNS for training MMKGC models. The source codes and datasets of this paper are available at https://github.com/ngl567/DHNS.


MdEval: Massively Multilingual Code Debugging

arXiv.org Artificial Intelligence

Code large language models (LLMs) have made significant progress in code debugging by directly generating the correct code based on the buggy code snippet. Programming benchmarks, typically consisting of buggy code snippet and their associated test cases, are used to assess the debugging capabilities of LLMs. However, many existing benchmarks primarily focus on Python and are often limited in terms of language diversity (e.g., DebugBench and DebugEval). To advance the field of multilingual debugging with LLMs, we propose the first massively multilingual debugging benchmark, which includes 3.6K test samples of 18 programming languages and covers the automated program repair (APR) task, the code review (CR) task, and the bug identification (BI) task. Further, we introduce the debugging instruction corpora MDEVAL-INSTRUCT by injecting bugs into the correct multilingual queries and solutions (xDebugGen). Further, a multilingual debugger xDebugCoder trained on MDEVAL-INSTRUCT as a strong baseline specifically to handle the bugs of a wide range of programming languages (e.g. "Missing Mut" in language Rust and "Misused Macro Definition" in language C). Our extensive experiments on MDEVAL reveal a notable performance gap between open-source models and closed-source LLMs (e.g., GPT and Claude series), highlighting huge room for improvement in multilingual code debugging scenarios.


CCUP: A Controllable Synthetic Data Generation Pipeline for Pretraining Cloth-Changing Person Re-Identification Models

arXiv.org Artificial Intelligence

Cloth-changing person re-identification (CC-ReID), also known as Long-Term Person Re-Identification (LT-ReID) is a critical and challenging research topic in computer vision that has recently garnered significant attention. However, due to the high cost of constructing CC-ReID data, the existing data-driven models are hard to train efficiently on limited data, causing overfitting issue. To address this challenge, we propose a low-cost and efficient pipeline for generating controllable and high-quality synthetic data simulating the surveillance of real scenarios specific to the CC-ReID task. Particularly, we construct a new self-annotated CC-ReID dataset named Cloth-Changing Unreal Person (CCUP), containing 6,000 IDs, 1,179,976 images, 100 cameras, and 26.5 outfits per individual. Based on this large-scale dataset, we introduce an effective and scalable pretrain-finetune framework for enhancing the generalization capabilities of the traditional CC-ReID models. The extensive experiments demonstrate that two typical models namely TransReID and FIRe^2, when integrated into our framework, outperform other state-of-the-art models after pretraining on CCUP and finetuning on the benchmarks such as PRCC, VC-Clothes and NKUP. The CCUP is available at: https://github.com/yjzhao1019/CCUP.


Knowledge Graph Embeddings: A Comprehensive Survey on Capturing Relation Properties

arXiv.org Artificial Intelligence

Knowledge Graph Embedding (KGE) techniques play a pivotal role in transforming symbolic Knowledge Graphs (KGs) into numerical representations, thereby enhancing various deep learning models for knowledge-augmented applications. Unlike entities, relations in KGs are the carriers of semantic meaning, and their accurate modeling is crucial for the performance of KGE models. Firstly, we address the complex mapping properties inherent in relations, such as one-to-one, one-to-many, many-to-one, and many-to-many mappings. We provide a comprehensive summary of relation-aware mapping-based models, models that utilize specific representation spaces, tensor decomposition-based models, and neural network-based models. Next, focusing on capturing various relation patterns like symmetry, asymmetry, inversion, and composition, we review models that employ modified tensor decomposition, those based on modified relation-aware mappings, and those that leverage rotation operations. Subsequently, considering the implicit hierarchical relations among entities, we introduce models that incorporate auxiliary information, models based on hyperbolic spaces, and those that utilize the polar coordinate system. Finally, in response to more complex scenarios such as sparse and dynamic KGs, this paper discusses potential future research directions. We explore innovative ideas such as integrating multimodal information into KGE, enhancing relation pattern modeling with rules, and developing models to capture relation characteristics in dynamic KGE settings.


A Pluggable Common Sense-Enhanced Framework for Knowledge Graph Completion

arXiv.org Artificial Intelligence

Knowledge graph completion (KGC) tasks aim to infer missing facts in a knowledge graph (KG) for many knowledge-intensive applications. However, existing embedding-based KGC approaches primarily rely on factual triples, potentially leading to outcomes inconsistent with common sense. Besides, generating explicit common sense is often impractical or costly for a KG. To address these challenges, we propose a pluggable common sense-enhanced KGC framework that incorporates both fact and common sense for KGC. This framework is adaptable to different KGs based on their entity concept richness and has the capability to automatically generate explicit or implicit common sense from factual triples. Furthermore, we introduce common sense-guided negative sampling and a coarse-to-fine inference approach for KGs with rich entity concepts. For KGs without concepts, we propose a dual scoring scheme involving a relation-aware concept embedding mechanism. Importantly, our approach can be integrated as a pluggable module for many knowledge graph embedding (KGE) models, facilitating joint common sense and fact-driven training and inference. The experiments illustrate that our framework exhibits good scalability and outperforms existing models across various KGC tasks.


Logic and Commonsense-Guided Temporal Knowledge Graph Completion

arXiv.org Artificial Intelligence

A temporal knowledge graph (TKG) stores the events derived from the data involving time. Predicting events is extremely challenging due to the time-sensitive property of events. Besides, the previous TKG completion (TKGC) approaches cannot represent both the timeliness and the causality properties of events, simultaneously. To address these challenges, we propose a Logic and Commonsense-Guided Embedding model (LCGE) to jointly learn the time-sensitive representation involving timeliness and causality of events, together with the time-independent representation of events from the perspective of commonsense. Specifically, we design a temporal rule learning algorithm to construct a rule-guided predicate embedding regularization strategy for learning the causality among events. Furthermore, we could accurately evaluate the plausibility of events via auxiliary commonsense knowledge. The experimental results of TKGC task illustrate the significant performance improvements of our model compared with the existing approaches. More interestingly, our model is able to provide the explainability of the predicted results in the view of causal inference. The source code and datasets of this paper are available at https://github.com/ngl567/LCGE.


EngineKGI: Closed-Loop Knowledge Graph Inference

arXiv.org Artificial Intelligence

Knowledge Graph (KG) inference is the vital technique to address the natural incompleteness of KGs. The existing KG inference approaches can be classified into rule learning-based and KG embedding-based models. However, these approaches cannot well balance accuracy, generalization, interpretability and efficiency, simultaneously. Besides, these models always rely on pure triples and neglect additional information. Therefore, both KG embedding (KGE) and rule learning KG inference approaches face challenges due to the sparse entities and the limited semantics. We propose a novel and effective closed-loop KG inference framework EngineKGI operating similarly as an engine based on these observations. EngineKGI combines KGE and rule learning to complement each other in a closed-loop pattern while taking advantage of semantics in paths and concepts. KGE module exploits paths to enhance the semantic association between entities and introduces rules for interpretability. A novel rule pruning mechanism is proposed in the rule learning module by leveraging paths as initial candidate rules and employing KG embeddings together with concepts for extracting more high-quality rules. Experimental results on four real-world datasets show that our model outperforms other baselines on link prediction tasks, demonstrating the effectiveness and superiority of our model on KG inference in a joint logic and data-driven fashion with a closed-loop mechanism.


Path-Enhanced Multi-Relational Question Answering with Knowledge Graph Embeddings

arXiv.org Artificial Intelligence

The multi-relational Knowledge Base Question Answering (KBQA) system performs multi-hop reasoning over the knowledge graph (KG) to achieve the answer. Recent approaches attempt to introduce the knowledge graph embedding (KGE) technique to handle the KG incompleteness but only consider the triple facts and neglect the significant semantic correlation between paths and multi-relational questions. In this paper, we propose a Path and Knowledge Embedding-Enhanced multi-relational Question Answering model (PKEEQA), which leverages multi-hop paths between entities in the KG to evaluate the ambipolar correlation between a path embedding and a multi-relational question embedding via a customizable path representation mechanism, benefiting for achieving more accurate answers from the perspective of both the triple facts and the extra paths. Experimental results illustrate that PKEEQA improves KBQA models' performance for multi-relational question answering with explainability to some extent derived from paths.


Entity Concept-enhanced Few-shot Relation Extraction

arXiv.org Artificial Intelligence

Few-shot relation extraction (FSRE) is of great importance in long-tail distribution problem, especially in special domain with low-resource data. Most existing FSRE algorithms fail to accurately classify the relations merely based on the information of the sentences together with the recognized entity pairs, due to limited samples and lack of knowledge. To address this problem, in this paper, we proposed a novel entity CONCEPT-enhanced FEw-shot Relation Extraction scheme (ConceptFERE), which introduces the inherent concepts of entities to provide clues for relation prediction and boost the relations classification performance. Firstly, a concept-sentence attention module is developed to select the most appropriate concept from multiple concepts of each entity by calculating the semantic similarity between sentences and concepts. Secondly, a self-attention based fusion module is presented to bridge the gap of concept embedding and sentence embedding from different semantic spaces. Extensive experiments on the FSRE benchmark dataset FewRel have demonstrated the effectiveness and the superiority of the proposed ConceptFERE scheme as compared to the state-of-the-art baselines. Code is available at https://github.com/LittleGuoKe/ConceptFERE.


Relational Learning with Gated and Attentive Neighbor Aggregator for Few-Shot Knowledge Graph Completion

arXiv.org Artificial Intelligence

Aiming at expanding few-shot relations' coverage in knowledge graphs (KGs), few-shot knowledge graph completion (FKGC) has recently gained more research interests. Some existing models employ a few-shot relation's multi-hop neighbor information to enhance its semantic representation. However, noise neighbor information might be amplified when the neighborhood is excessively sparse and no neighbor is available to represent the few-shot relation. Moreover, modeling and inferring complex relations of one-to-many (1-N), many-to-one (N-1), and many-to-many (N-N) by previous knowledge graph completion approaches requires high model complexity and a large amount of training instances. Thus, inferring complex relations in the few-shot scenario is difficult for FKGC models due to limited training instances. In this paper, we propose a few-shot relational learning with global-local framework to address the above issues. At the global stage, a novel gated and attentive neighbor aggregator is built for accurately integrating the semantics of a few-shot relation's neighborhood, which helps filtering the noise neighbors even if a KG contains extremely sparse neighborhoods. For the local stage, a meta-learning based TransH (MTransH) method is designed to model complex relations and train our model in a few-shot learning fashion. Extensive experiments show that our model outperforms the state-of-the-art FKGC approaches on the frequently-used benchmark datasets NELL-One and Wiki-One. Compared with the strong baseline model MetaR, our model achieves 5-shot FKGC performance improvements of 8.0% on NELL-One and 2.8% on Wiki-One by the metric Hits@10.