Goto

Collaborating Authors

 Niu, Chuang


Development and Validation of a Dynamic-Template-Constrained Large Language Model for Generating Fully-Structured Radiology Reports

arXiv.org Artificial Intelligence

Current LLMs for creating fully-structured reports face the challenges of formatting errors, content hallucinations, and privacy leakage issues when uploading data to external servers.We aim to develop an open-source, accurate LLM for creating fully-structured and standardized LCS reports from varying free-text reports across institutions and demonstrate its utility in automatic statistical analysis and individual lung nodule retrieval. With IRB approvals, our retrospective study included 5,442 de-identified LDCT LCS radiology reports from two institutions. We constructed two evaluation datasets by labeling 500 pairs of free-text and fully-structured radiology reports and one large-scale consecutive dataset from January 2021 to December 2023. Two radiologists created a standardized template for recording 27 lung nodule features on LCS. We designed a dynamic-template-constrained decoding method to enhance existing LLMs for creating fully-structured reports from free-text radiology reports. Using consecutive structured reports, we automated descriptive statistical analyses and a nodule retrieval prototype. Our best LLM for creating fully-structured reports achieved high performance on cross-institutional datasets with an F1 score of about 97%, with neither formatting errors nor content hallucinations. Our method consistently improved the best open-source LLMs by up to 10.42%, and outperformed GPT-4o by 17.19%. The automatically derived statistical distributions were consistent with prior findings regarding attenuation, location, size, stability, and Lung-RADS. The retrieval system with structured reports allowed flexible nodule-level search and complex statistical analysis. Our developed software is publicly available for local deployment and further research.


IQAGPT: Image Quality Assessment with Vision-language and ChatGPT Models

arXiv.org Artificial Intelligence

Large language models (LLMs), such as ChatGPT, have demonstrated impressive capabilities in various tasks and attracted an increasing interest as a natural language interface across many domains. Recently, large vision-language models (VLMs) like BLIP-2 and GPT-4 have been intensively investigated, which learn rich vision-language correlation from image-text pairs. However, despite these developments, the application of LLMs and VLMs in image quality assessment (IQA), particularly in medical imaging, remains to be explored, which is valuable for objective performance evaluation and potential supplement or even replacement of radiologists' opinions. To this end, this paper introduces IQAGPT, an innovative image quality assessment system integrating an image quality captioning VLM with ChatGPT for generating quality scores and textual reports. First, we build a CT-IQA dataset for training and evaluation, comprising 1,000 CT slices with diverse quality levels professionally annotated. To better leverage the capabilities of LLMs, we convert annotated quality scores into semantically rich text descriptions using a prompt template. Second, we fine-tune the image quality captioning VLM on the CT-IQA dataset to generate quality descriptions. The captioning model fuses the image and text features through cross-modal attention. Third, based on the quality descriptions, users can talk with ChatGPT to rate image quality scores or produce a radiological quality report. Our preliminary results demonstrate the feasibility of assessing image quality with large models. Remarkably, our IQAGPT outperforms GPT-4 and CLIP-IQA, as well as the multi-task classification and regression models that solely rely on images.


Diffusion Prior Regularized Iterative Reconstruction for Low-dose CT

arXiv.org Artificial Intelligence

Computed tomography (CT) involves a patient's exposure to ionizing radiation. To reduce the radiation dose, we can either lower the X-ray photon count or down-sample projection views. However, either of the ways often compromises image quality. To address this challenge, here we introduce an iterative reconstruction algorithm regularized by a diffusion prior. Drawing on the exceptional imaging prowess of the denoising diffusion probabilistic model (DDPM), we merge it with a reconstruction procedure that prioritizes data fidelity. This fusion capitalizes on the merits of both techniques, delivering exceptional reconstruction results in an unsupervised framework. To further enhance the efficiency of the reconstruction process, we incorporate the Nesterov momentum acceleration technique. This enhancement facilitates superior diffusion sampling in fewer steps. As demonstrated in our experiments, our method offers a potential pathway to high-definition CT image reconstruction with minimized radiation.


CT Multi-Task Learning with a Large Image-Text (LIT) Model

arXiv.org Artificial Intelligence

Large language models (LLM) not only empower multiple language tasks but also serve as a general interface across different spaces. Up to now, it has not been demonstrated yet how to effectively translate the successes of LLMs in the computer vision field to the medical imaging field which involves high-dimensional and multi-modal medical images. In this paper, we report a feasibility study of building a multi-task CT large image-text (LIT) model for lung cancer diagnosis by combining an LLM and a large image model (LIM). Specifically, the LLM and LIM are used as encoders to perceive multi-modal information under task-specific text prompts, which synergizes multi-source information and task-specific and patient-specific priors for optimized diagnostic performance. The key components of our LIT model and associated techniques are evaluated with an emphasis on 3D lung CT analysis. Our initial results show that the LIT model performs multiple medical tasks well, including lung segmentation, lung nodule detection, and lung cancer classification. Active efforts are in progress to develop large image-language models for superior medical imaging in diverse applications and optimal patient outcomes.


Translating Radiology Reports into Plain Language using ChatGPT and GPT-4 with Prompt Learning: Promising Results, Limitations, and Potential

arXiv.org Artificial Intelligence

The large language model called ChatGPT has drawn extensively attention because of its human-like expression and reasoning abilities. In this study, we investigate the feasibility of using ChatGPT in experiments on using ChatGPT to translate radiology reports into plain language for patients and healthcare providers so that they are educated for improved healthcare. Radiology reports from 62 low-dose chest CT lung cancer screening scans and 76 brain MRI metastases screening scans were collected in the first half of February for this study. According to the evaluation by radiologists, ChatGPT can successfully translate radiology reports into plain language with an average score of 4.27 in the five-point system with 0.08 places of information missing and 0.07 places of misinformation. In terms of the suggestions provided by ChatGPT, they are general relevant such as keeping following-up with doctors and closely monitoring any symptoms, and for about 37% of 138 cases in total ChatGPT offers specific suggestions based on findings in the report. ChatGPT also presents some randomness in its responses with occasionally over-simplified or neglected information, which can be mitigated using a more detailed prompt. Furthermore, ChatGPT results are compared with a newly released large model GPT-4, showing that GPT-4 can significantly improve the quality of translated reports. Our results show that it is feasible to utilize large language models in clinical education, and further efforts are needed to address limitations and maximize their potential.


Sub-volume-based Denoising Diffusion Probabilistic Model for Cone-beam CT Reconstruction from Incomplete Data

arXiv.org Artificial Intelligence

Deep learning (DL) has emerged as a new approach in the field of computed tomography (CT) with many applicaitons. A primary example is CT reconstruction from incomplete data, such as sparse-view image reconstruction. However, applying DL to sparse-view cone-beam CT (CBCT) remains challenging. Many models learn the mapping from sparse-view CT images to the ground truth but often fail to achieve satisfactory performance. Incorporating sinogram data and performing dual-domain reconstruction improve image quality with artifact suppression, but a straightforward 3D implementation requires storing an entire 3D sinogram in memory and many parameters of dual-domain networks. This remains a major challenge, limiting further research, development and applications. In this paper, we propose a sub-volume-based 3D denoising diffusion probabilistic model (DDPM) for CBCT image reconstruction from down-sampled data. Our DDPM network, trained on data cubes extracted from paired fully sampled sinograms and down-sampled sinograms, is employed to inpaint down-sampled sinograms. Our method divides the entire sinogram into overlapping cubes and processes them in parallel on multiple GPUs, successfully overcoming the memory limitation. Experimental results demonstrate that our approach effectively suppresses few-view artifacts while preserving textural details faithfully.


QS-ADN: Quasi-Supervised Artifact Disentanglement Network for Low-Dose CT Image Denoising by Local Similarity Among Unpaired Data

arXiv.org Artificial Intelligence

Deep learning has been successfully applied to low-dose CT (LDCT) image denoising for reducing potential radiation risk. However, the widely reported supervised LDCT denoising networks require a training set of paired images, which is expensive to obtain and cannot be perfectly simulated. Unsupervised learning utilizes unpaired data and is highly desirable for LDCT denoising. As an example, an artifact disentanglement network (ADN) relies on unparied images and obviates the need for supervision but the results of artifact reduction are not as good as those through supervised learning.An important observation is that there is often hidden similarity among unpaired data that can be utilized. This paper introduces a new learning mode, called quasi-supervised learning, to empower the ADN for LDCT image denoising.For every LDCT image, the best matched image is first found from an unpaired normal-dose CT (NDCT) dataset. Then, the matched pairs and the corresponding matching degree as prior information are used to construct and train our ADN-type network for LDCT denoising.The proposed method is different from (but compatible with) supervised and semi-supervised learning modes and can be easily implemented by modifying existing networks. The experimental results show that the method is competitive with state-of-the-art methods in terms of noise suppression and contextual fidelity. The code and working dataset are publicly available at https://github.com/ruanyuhui/ADN-QSDL.git.


X-ray Dissectography Enables Stereotography to Improve Diagnostic Performance

arXiv.org Artificial Intelligence

X-ray imaging is the most popular medical imaging technology. While x-ray radiography is rather cost-effective, tissue structures are superimposed along the x-ray paths. On the other hand, computed tomography (CT) reconstructs internal structures but CT increases radiation dose, is complicated and expensive. Here we propose "x-ray dissectography" to extract a target organ/tissue digitally from few radiographic projections for stereographic and tomographic analysis in the deep learning framework. As an exemplary embodiment, we propose a general X-ray dissectography network, a dedicated X-ray stereotography network, and the X-ray imaging systems to implement these functionalities. Our experiments show that x-ray stereography can be achieved of an isolated organ such as the lungs in this case, suggesting the feasibility of transforming conventional radiographic reading to the stereographic examination of the isolated organ, which potentially allows higher sensitivity and specificity, and even tomographic visualization of the target. With further improvements, x-ray dissectography promises to be a new x-ray imaging modality for CT-grade diagnosis at radiation dose and system cost comparable to that of radiographic or tomosynthetic imaging.


SPICE: Semantic Pseudo-labeling for Image Clustering

arXiv.org Artificial Intelligence

This paper presents SPICE, a Semantic Pseudo-labeling framework for Image ClustEring. Instead of using indirect loss functions required by the recently proposed methods, SPICE generates pseudo-labels via self-learning and directly uses the pseudo-label-based classification loss to train a deep clustering network. The basic idea of SPICE is to synergize the discrepancy among semantic clusters, the similarity among instance samples, and the semantic consistency of local samples in an embedding space to optimize the clustering network in a semantically-driven paradigm. Specifically, a semantic-similarity-based pseudo-labeling algorithm is first proposed to train a clustering network through unsupervised representation learning. Given the initial clustering results, a local semantic consistency principle is used to select a set of reliably labeled samples, and a semi-pseudo-labeling algorithm is adapted for performance boosting. Extensive experiments demonstrate that SPICE clearly outperforms the state-of-the-art methods on six common benchmark datasets including STL10, Cifar10, Cifar100-20, ImageNet-10, ImageNet-Dog, and Tiny-ImageNet. On average, our SPICE method improves the current best results by about 10% in terms of adjusted rand index, normalized mutual information, and clustering accuracy.