Goto

Collaborating Authors

 Nissani, Daniel N.


Contrastive Learning and the Emergence of Attributes Associations

arXiv.org Artificial Intelligence

In response to an object presentation, supervised learning schemes generally respond with a parsimonious label. Upon a similar presentation we humans respond again with a label, but are flooded, in addition, by a myriad of associations. A significant portion of these consist of the presented object attributes. Contrastive learning is a semi-supervised learning scheme based on the application of identity preserving transformations on the object input representations. It is conjectured in this work that these same applied transformations preserve, in addition to the identity of the presented object, also the identity of its semantically meaningful attributes. The corollary of this is that the output representations of such a contrastive learning scheme contain valuable information not only for the classification of the presented object, but also for the presence or absence decision of any attribute of interest. Simulation results which demonstrate this idea and the feasibility of this conjecture are presented.


An Unsupervised Learning Classifier with Competitive Error Performance

arXiv.org Machine Learning

An unsupervised learning classification model is described. It achieves classification error probability competitive with that of popular supervised learning classifiers such as SVM or kNN. The model is based on the incremental execution of small step shift and rotation operations upon selected discriminative hyperplanes at the arrival of input samples. When applied, in conjunction with a selected feature extractor, to a subset of the ImageNet dataset benchmark, it yields 6.2 % Top 3 probability of error; this exceeds by merely about 2 % the result achieved by (supervised) k-Nearest Neighbor, both using same feature extractor. This result may also be contrasted with popular unsupervised learning schemes such as k-Means which is shown to be practically useless on same dataset.