Nishida, Kosuke
Zero-shot Concept Bottleneck Models
Yamaguchi, Shin'ya, Nishida, Kosuke, Chijiwa, Daiki, Ida, Yasutoshi
Concept bottleneck models (CBMs) are inherently interpretable and intervenable neural network models, which explain their final label prediction by the intermediate prediction of high-level semantic concepts. However, they require target task training to learn input-to-concept and concept-to-label mappings, incurring target dataset collections and training resources. In this paper, we present \textit{zero-shot concept bottleneck models} (Z-CBMs), which predict concepts and labels in a fully zero-shot manner without training neural networks. Z-CBMs utilize a large-scale concept bank, which is composed of millions of vocabulary extracted from the web, to describe arbitrary input in various domains. For the input-to-concept mapping, we introduce concept retrieval, which dynamically finds input-related concepts by the cross-modal search on the concept bank. In the concept-to-label inference, we apply concept regression to select essential concepts from the retrieved concepts by sparse linear regression. Through extensive experiments, we confirm that our Z-CBMs provide interpretable and intervenable concepts without any additional training. Code will be available at https://github.com/yshinya6/zcbm.
Explanation Bottleneck Models
Yamaguchi, Shin'ya, Nishida, Kosuke
Recent concept-based interpretable models have succeeded in providing meaningful explanations by pre-defined concept sets. However, the dependency on the pre-defined concepts restricts the application because of the limited number of concepts for explanations. This paper proposes a novel interpretable deep neural network called explanation bottleneck models (XBMs). XBMs generate a text explanation from the input without pre-defined concepts and then predict a final task prediction based on the generated explanation by leveraging pre-trained vision-language encoder-decoder models. To achieve both the target task performance and the explanation quality, we train XBMs through the target task loss with the regularization penalizing the explanation decoder via the distillation from the frozen pre-trained decoder. Our experiments, including a comparison to state-of-the-art concept bottleneck models, confirm that XBMs provide accurate and fluent natural language explanations without pre-defined concept sets. Code will be available at https://github.com/yshinya6/xbm/.
Initialization of Large Language Models via Reparameterization to Mitigate Loss Spikes
Nishida, Kosuke, Nishida, Kyosuke, Saito, Kuniko
Loss spikes, a phenomenon in which the loss value diverges suddenly, is a fundamental issue in the pre-training of large language models. This paper supposes that the non-uniformity of the norm of the parameters is one of the causes of loss spikes. Here, in training of neural networks, the scale of the gradients is required to be kept constant throughout the layers to avoid the vanishing and exploding gradients problem. However, to meet these requirements in the Transformer model, the norm of the model parameters must be non-uniform, and thus, parameters whose norm is smaller are more sensitive to the parameter update. To address this issue, we propose a novel technique, weight scaling as reparameterization (WeSaR). WeSaR introduces a gate parameter per parameter matrix and adjusts it to the value satisfying the requirements. Because of the gate parameter, WeSaR sets the norm of the original parameters uniformly, which results in stable training. Experimental results with the Transformer decoders consisting of 130 million, 1.3 billion, and 13 billion parameters showed that WeSaR stabilizes and accelerates training and that it outperformed compared methods including popular initialization methods.
Self-Adaptive Named Entity Recognition by Retrieving Unstructured Knowledge
Nishida, Kosuke, Yoshinaga, Naoki, Nishida, Kyosuke
Although named entity recognition (NER) helps us to extract domain-specific entities from text (e.g., artists in the music domain), it is costly to create a large amount of training data or a structured knowledge base to perform accurate NER in the target domain. Here, we propose self-adaptive NER, which retrieves external knowledge from unstructured text to learn the usages of entities that have not been learned well. To retrieve useful knowledge for NER, we design an effective two-stage model that retrieves unstructured knowledge using uncertain entities as queries. Our model predicts the entities in the input and then finds those of which the prediction is not confident. Then, it retrieves knowledge by using these uncertain entities as queries and concatenates the retrieved text to the original input to revise the prediction. Experiments on CrossNER datasets demonstrated that our model outperforms strong baselines by 2.35 points in F1 metric.
Robust Text-driven Image Editing Method that Adaptively Explores Directions in Latent Spaces of StyleGAN and CLIP
Baba, Tsuyoshi, Nishida, Kosuke, Nishida, Kyosuke
Automatic image editing has great demands because of its numerous applications, and the use of natural language instructions is essential to achieving flexible and intuitive editing as the user imagines. A pioneering work in text-driven image editing, StyleCLIP, finds an edit direction in the CLIP space and then edits the image by mapping the direction to the StyleGAN space. At the same time, it is difficult to tune appropriate inputs other than the original image and text instructions for image editing. In this study, we propose a method to construct the edit direction adaptively in the StyleGAN and CLIP spaces with SVM. Our model represents the edit direction as a normal vector in the CLIP space obtained by training a SVM to classify positive and negative images. The images are retrieved from a large-scale image corpus, originally used for pre-training StyleGAN, according to the CLIP similarity between the images and the text instruction. We confirmed that our model performed as well as the StyleCLIP baseline, whereas it allows simple inputs without increasing the computational time.
SlideVQA: A Dataset for Document Visual Question Answering on Multiple Images
Tanaka, Ryota, Nishida, Kyosuke, Nishida, Kosuke, Hasegawa, Taku, Saito, Itsumi, Saito, Kuniko
Visual question answering on document images that contain textual, visual, and layout information, called document VQA, has received much attention recently. Although many datasets have been proposed for developing document VQA systems, most of the existing datasets focus on understanding the content relationships within a single image and not across multiple images. In this study, we propose a new multi-image document VQA dataset, SlideVQA, containing 2.6k+ slide decks composed of 52k+ slide images and 14.5k questions about a slide deck. SlideVQA requires complex reasoning, including single-hop, multi-hop, and numerical reasoning, and also provides annotated arithmetic expressions of numerical answers for enhancing the ability of numerical reasoning. Moreover, we developed a new end-to-end document VQA model that treats evidence selection and question answering in a unified sequence-to-sequence format. Experiments on SlideVQA show that our model outperformed existing state-of-the-art QA models, but that it still has a large gap behind human performance. We believe that our dataset will facilitate research on document VQA.