Ning, Zhaolong
Mobility-aware Seamless Service Migration and Resource Allocation in Multi-edge IoV Systems
Chen, Zheyi, Huang, Sijin, Min, Geyong, Ning, Zhaolong, Li, Jie, Zhang, Yan
Abstract--Mobile Edge Computing (MEC) offers low-latency and high-bandwidth support for Internet-of-Vehicles (IoV) applications. However, due to high vehicle mobility and finite communication coverage of base stations, it is hard to maintain uninterrupted and high-quality services without proper service migration among MEC servers. Existing solutions commonly rely on prior knowledge and rarely consider efficient resource allocation during the service migration process, making it hard to reach optimal performance in dynamic IoV environments. To address these important challenges, we propose SR-CL, a novel mobility-aware seamless Service migration and Resource allocation framework via Convex-optimization-enabled deep reinforcement Learning in multi-edge IoV systems. First, we decouple the Mixed Integer Nonlinear Programming (MINLP) problem of service migration and resource allocation into two sub-problems. Next, we design a new actor-critic-based asynchronous-update deep reinforcement learning method to handle service migration, where the delayed-update actor makes migration decisions and the one-step-update critic evaluates the decisions to guide the policy update. Notably, we theoretically derive the optimal resource allocation with convex optimization for each MEC server, thereby further improving system performance. Using the real-world datasets of vehicle trajectories and testbed, extensive experiments are conducted to verify the effectiveness of the proposed SR-CL. Compared to benchmark methods, the SR-CL achieves superior convergence and delay performance under various scenarios. However, the real-time demands of IoV applications pose When vehicles offload tasks, MEC servers create dedicated significant challenges for onboard processors with limited service instances via virtualization techniques for the vehicles computational capabilities [2]. Although Cloud Computing and allocate proper resources to them [7].
A Survey on Trustworthy Edge Intelligence: From Security and Reliability To Transparency and Sustainability
Wang, Xiaojie, Wang, Beibei, Wu, Yu, Ning, Zhaolong, Guo, Song, Yu, Fei Richard
Edge Intelligence (EI) integrates Edge Computing (EC) and Artificial Intelligence (AI) to push the capabilities of AI to the network edge for real-time, efficient and secure intelligent decision-making and computation. However, EI faces various challenges due to resource constraints, heterogeneous network environments, and diverse service requirements of different applications, which together affect the trustworthiness of EI in the eyes of stakeholders. This survey comprehensively summarizes the characteristics, architecture, technologies, and solutions of trustworthy EI. Specifically, we first emphasize the need for trustworthy EI in the context of the trend toward large models. We then provide an initial definition of trustworthy EI, explore its key characteristics and give a multi-layered architecture for trustworthy EI. Then, we summarize several important issues that hinder the achievement of trustworthy EI. Subsequently, we present enabling technologies for trustworthy EI systems and provide an in-depth literature review of the state-of-the-art solutions for realizing the trustworthiness of EI. Finally, we discuss the corresponding research challenges and open issues.
Joint User Association, Interference Cancellation and Power Control for Multi-IRS Assisted UAV Communications
Ning, Zhaolong, Hu, Hao, Wang, Xiaojie, Wu, Qingqing, Yuen, Chau, Yu, F. Richard, Zhang, Yan
Intelligent reflecting surface (IRS)-assisted unmanned aerial vehicle (UAV) communications are expected to alleviate the load of ground base stations in a cost-effective way. Existing studies mainly focus on the deployment and resource allocation of a single IRS instead of multiple IRSs, whereas it is extremely challenging for joint multi-IRS multi-user association in UAV communications with constrained reflecting resources and dynamic scenarios. To address the aforementioned challenges, we propose a new optimization algorithm for joint IRS-user association, trajectory optimization of UAVs, successive interference cancellation (SIC) decoding order scheduling and power allocation to maximize system energy efficiency. We first propose an inverse soft-Q learning-based algorithm to optimize multi-IRS multi-user association. Then, SCA and Dinkelbach-based algorithm are leveraged to optimize UAV trajectory followed by the optimization of SIC decoding order scheduling and power allocation. Finally, theoretical analysis and performance results show significant advantages of the designed algorithm in convergence rate and energy efficiency.