Goto

Collaborating Authors

 Ning, Kanghui


Multi-modal Time Series Analysis: A Tutorial and Survey

arXiv.org Artificial Intelligence

Multi-modal time series analysis has recently emerged as a prominent research area in data mining, driven by the increasing availability of diverse data modalities, such as text, images, and structured tabular data from real-world sources. However, effective analysis of multi-modal time series is hindered by data heterogeneity, modality gap, misalignment, and inherent noise. Recent advancements in multi-modal time series methods have exploited the multi-modal context via cross-modal interactions based on deep learning methods, significantly enhancing various downstream tasks. In this tutorial and survey, we present a systematic and up-to-date overview of multi-modal time series datasets and methods. We first state the existing challenges of multi-modal time series analysis and our motivations, with a brief introduction of preliminaries. Then, we summarize the general pipeline and categorize existing methods through a unified cross-modal interaction framework encompassing fusion, alignment, and transference at different levels (\textit{i.e.}, input, intermediate, output), where key concepts and ideas are highlighted. We also discuss the real-world applications of multi-modal analysis for both standard and spatial time series, tailored to general and specific domains. Finally, we discuss future research directions to help practitioners explore and exploit multi-modal time series. The up-to-date resources are provided in the GitHub repository: https://github.com/UConn-DSIS/Multi-modal-Time-Series-Analysis


TS-RAG: Retrieval-Augmented Generation based Time Series Foundation Models are Stronger Zero-Shot Forecaster

arXiv.org Artificial Intelligence

Recently, Large Language Models (LLMs) and Foundation Models (FMs) have become prevalent for time series forecasting tasks. However, fine-tuning large language models (LLMs) for forecasting enables the adaptation to specific domains but may not generalize well across diverse, unseen datasets. Meanwhile, existing time series foundation models (TSFMs) lack inherent mechanisms for domain adaptation and suffer from limited interpretability, making them suboptimal for zero-shot forecasting. To this end, we present TS-RAG, a retrieval-augmented generation based time series forecasting framework that enhances the generalization capability and interpretability of TSFMs. Specifically, TS-RAG leverages pre-trained time series encoders to retrieve semantically relevant time series segments from a dedicated knowledge database, incorporating contextual patterns for the given time series query. Next, we develop a learnable Mixture-of-Experts (MoE)-based augmentation module, which dynamically fuses retrieved time series patterns with the TSFM's representation of the input query, improving forecasting accuracy without requiring task-specific fine-tuning. Thorough empirical studies on seven public benchmark datasets demonstrate that TS-RAG achieves state-of-the-art zero-shot forecasting performance, outperforming TSFMs by up to 6.51% across diverse domains and showcasing desired interpretability.