Goto

Collaborating Authors

 Nikulin, Vadim V.


Estimating vector fields using sparse basis field expansions

Neural Information Processing Systems

We introduce a novel framework for estimating vector fields using sparse basis field expansions (S-FLEX). The notion of basis fields, which are an extension of scalar basis functions, arises naturally in our framework from a rotational invariance requirement. We consider a regression setting as well as inverse problems. All variants discussed lead to second-order cone programming formulations. While our framework is generally applicable to any type of vector field, we focus in this paper on applying it to solving the EEG/MEG inverse problem. It is shown that significantly more precise and neurophysiologically more plausible location and shape estimates of cerebral current sources from EEG/MEG measurements become possible with our method when comparing to the state-of-the-art.


Invariant Common Spatial Patterns: Alleviating Nonstationarities in Brain-Computer Interfacing

Neural Information Processing Systems

Brain-Computer Interfaces can suffer from a large variance of the subject conditions withinand across sessions. For example vigilance fluctuations in the individual, variabletask involvement, workload etc. alter the characteristics of EEG signals and thus challenge a stable BCI operation. In the present work we aim to define features based on a variant of the common spatial patterns (CSP) algorithm that are constructed invariant with respect to such nonstationarities. We enforce invariance properties by adding terms to the denominator of a Rayleigh coefficient representation of CSP such as disturbance covariance matrices from fluctuations in visual processing. In this manner physiological prior knowledge can be used to shape the classification engine for BCI. As a proof of concept we present a BCI classifier that is robust to changes in the level of parietal α-activity. In other words, the EEG decoding still works when there are lapses in vigilance.