Goto

Collaborating Authors

 Nikolić, Danko


Guided Transfer Learning

arXiv.org Artificial Intelligence

Machine learning requires exuberant amounts of data and computation. Also, models require equally excessive growth in the number of parameters. It is, therefore, sensible to look for technologies that reduce these demands on resources. Here, we propose an approach called guided transfer learning. Each weight and bias in the network has its own guiding parameter that indicates how much this parameter is allowed to change while learning a new task. Guiding parameters are learned during an initial scouting process. Guided transfer learning can result in a reduction in resources needed to train a network. In some applications, guided transfer learning enables the network to learn from a small amount of data. In other cases, a network with a smaller number of parameters can learn a task which otherwise only a larger network could learn. Guided transfer learning potentially has many applications when the amount of data, model size, or the availability of computational resources reach their limits.


Temporal dynamics of information content carried by neurons in the primary visual cortex

Neural Information Processing Systems

We use multi-electrode recordings from cat primary visual cortex and investigate whether a simple linear classifier can extract information about the presented stimuli. We find that information is extractable and that it even lasts for several hundred milliseconds after the stimulus has been removed. In a fast sequence of stimulus presentation, information about both new and old stimuli is present simultaneously and nonlinear relations between these stimuli can be extracted. These results suggest nonlinear properties of cortical representations. The important implications of these properties for the nonlinear brain theory are discussed.