Nikitin, Alexander
Kernel Language Entropy: Fine-grained Uncertainty Quantification for LLMs from Semantic Similarities
Nikitin, Alexander, Kossen, Jannik, Gal, Yarin, Marttinen, Pekka
Uncertainty quantification in Large Language Models (LLMs) is crucial for applications where safety and reliability are important. In particular, uncertainty can be used to improve the trustworthiness of LLMs by detecting factually incorrect model responses, commonly called hallucinations. Critically, one should seek to capture the model's semantic uncertainty, i.e., the uncertainty over the meanings of LLM outputs, rather than uncertainty over lexical or syntactic variations that do not affect answer correctness. To address this problem, we propose Kernel Language Entropy (KLE), a novel method for uncertainty estimation in white- and black-box LLMs. KLE defines positive semidefinite unit trace kernels to encode the semantic similarities of LLM outputs and quantifies uncertainty using the von Neumann entropy. It considers pairwise semantic dependencies between answers (or semantic clusters), providing more fine-grained uncertainty estimates than previous methods based on hard clustering of answers. We theoretically prove that KLE generalizes the previous state-of-the-art method called semantic entropy and empirically demonstrate that it improves uncertainty quantification performance across multiple natural language generation datasets and LLM architectures.
TopoX: A Suite of Python Packages for Machine Learning on Topological Domains
Hajij, Mustafa, Papillon, Mathilde, Frantzen, Florian, Agerberg, Jens, AlJabea, Ibrahem, Ballester, Ruben, Battiloro, Claudio, Bernรกrdez, Guillermo, Birdal, Tolga, Brent, Aiden, Chin, Peter, Escalera, Sergio, Fiorellino, Simone, Gardaa, Odin Hoff, Gopalakrishnan, Gurusankar, Govil, Devendra, Hoppe, Josef, Karri, Maneel Reddy, Khouja, Jude, Lecha, Manuel, Livesay, Neal, Meiรner, Jan, Mukherjee, Soham, Nikitin, Alexander, Papamarkou, Theodore, Prรญlepok, Jaro, Ramamurthy, Karthikeyan Natesan, Rosen, Paul, Guzmรกn-Sรกenz, Aldo, Salatiello, Alessandro, Samaga, Shreyas N., Scardapane, Simone, Schaub, Michael T., Scofano, Luca, Spinelli, Indro, Telyatnikov, Lev, Truong, Quang, Walters, Robin, Yang, Maosheng, Zaghen, Olga, Zamzmi, Ghada, Zia, Ali, Miolane, Nina
We introduce TopoX, a Python software suite that provides reliable and user-friendly building blocks for computing and machine learning on topological domains that extend graphs: hypergraphs, simplicial, cellular, path and combinatorial complexes. TopoX consists of three packages: TopoNetX facilitates constructing and computing on these domains, including working with nodes, edges and higher-order cells; TopoEmbedX provides methods to embed topological domains into vector spaces, akin to popular graph-based embedding algorithms such as node2vec; TopoModelX is built on top of PyTorch and offers a comprehensive toolbox of higher-order message passing functions for neural networks on topological domains. The extensively documented and unit-tested source code of TopoX is available under MIT license at https://github.com/pyt-team.
ICML 2023 Topological Deep Learning Challenge : Design and Results
Papillon, Mathilde, Hajij, Mustafa, Jenne, Helen, Mathe, Johan, Myers, Audun, Papamarkou, Theodore, Birdal, Tolga, Dey, Tamal, Doster, Tim, Emerson, Tegan, Gopalakrishnan, Gurusankar, Govil, Devendra, Guzmรกn-Sรกenz, Aldo, Kvinge, Henry, Livesay, Neal, Mukherjee, Soham, Samaga, Shreyas N., Ramamurthy, Karthikeyan Natesan, Karri, Maneel Reddy, Rosen, Paul, Sanborn, Sophia, Walters, Robin, Agerberg, Jens, Barikbin, Sadrodin, Battiloro, Claudio, Bazhenov, Gleb, Bernardez, Guillermo, Brent, Aiden, Escalera, Sergio, Fiorellino, Simone, Gavrilev, Dmitrii, Hassanin, Mohammed, Hรคusner, Paul, Gardaa, Odin Hoff, Khamis, Abdelwahed, Lecha, Manuel, Magai, German, Malygina, Tatiana, Ballester, Rubรฉn, Nadimpalli, Kalyan, Nikitin, Alexander, Rabinowitz, Abraham, Salatiello, Alessandro, Scardapane, Simone, Scofano, Luca, Singh, Suraj, Sjรถlund, Jens, Snopov, Pavel, Spinelli, Indro, Telyatnikov, Lev, Testa, Lucia, Yang, Maosheng, Yue, Yixiao, Zaghen, Olga, Zia, Ali, Miolane, Nina
This paper presents the computational challenge on topological deep learning that was hosted within the ICML 2023 Workshop on Topology and Geometry in Machine Learning. The competition asked participants to provide open-source implementations of topological neural networks from the literature by contributing to the python packages TopoNetX (data processing) and TopoModelX (deep learning). The challenge attracted twenty-eight qualifying submissions in its two-month duration. This paper describes the design of the challenge and summarizes its main findings.
Thin and Deep Gaussian Processes
de Souza, Daniel Augusto, Nikitin, Alexander, John, ST, Ross, Magnus, รlvarez, Mauricio A., Deisenroth, Marc Peter, Gomes, Joรฃo P. P., Mesquita, Diego, Mattos, Cรฉsar Lincoln C.
Gaussian processes (GPs) can provide a principled approach to uncertainty quantification with easy-to-interpret kernel hyperparameters, such as the lengthscale, which controls the correlation distance of function values. However, selecting an appropriate kernel can be challenging. Deep GPs avoid manual kernel engineering by successively parameterizing kernels with GP layers, allowing them to learn low-dimensional embeddings of the inputs that explain the output data. Following the architecture of deep neural networks, the most common deep GPs warp the input space layer-by-layer but lose all the interpretability of shallow GPs. An alternative construction is to successively parameterize the lengthscale of a kernel, improving the interpretability but ultimately giving away the notion of learning lower-dimensional embeddings. Unfortunately, both methods are susceptible to particular pathologies which may hinder fitting and limit their interpretability. This work proposes a novel synthesis of both previous approaches: Thin and Deep GP (TDGP). Each TDGP layer defines locally linear transformations of the original input data maintaining the concept of latent embeddings while also retaining the interpretation of lengthscales of a kernel. Moreover, unlike the prior solutions, TDGP induces non-pathological manifolds that admit learning lower-dimensional representations. We show with theoretical and experimental results that i) TDGP is, unlike previous models, tailored to specifically discover lower-dimensional manifolds in the input data, ii) TDGP behaves well when increasing the number of layers, and iii) TDGP performs well in standard benchmark datasets.
TSGM: A Flexible Framework for Generative Modeling of Synthetic Time Series
Nikitin, Alexander, Iannucci, Letizia, Kaski, Samuel
Temporally indexed data are essential in a wide range of fields and of interest to machine learning researchers. Time series data, however, are often scarce or highly sensitive, which precludes the sharing of data between researchers and industrial organizations and the application of existing and new data-intensive ML methods. A possible solution to this bottleneck is to generate synthetic data. In this work, we introduce Time Series Generative Modeling (TSGM), an open-source framework for the generative modeling of synthetic time series. TSGM includes a broad repertoire of machine learning methods: generative models, probabilistic, and simulator-based approaches. The framework enables users to evaluate the quality of the produced data from different angles: similarity, downstream effectiveness, predictive consistency, diversity, and privacy. The framework is extensible, which allows researchers to rapidly implement their own methods and compare them in a shareable environment. TSGM was tested on open datasets and in production and proved to be beneficial in both cases. Additionally to the library, the project allows users to employ command line interfaces for synthetic data generation which lowers the entry threshold for those without a programming background.
Non-separable Spatio-temporal Graph Kernels via SPDEs
Nikitin, Alexander, John, ST, Solin, Arno, Kaski, Samuel
Gaussian processes (GPs) provide a principled and direct approach for inference and learning on graphs. However, the lack of justified graph kernels for spatio-temporal modelling has held back their use in graph problems. We leverage an explicit link between stochastic partial differential equations (SPDEs) and GPs on graphs, and derive non-separable spatio-temporal graph kernels that capture interaction across space and time. We formulate the graph kernels for the stochastic heat equation and wave equation. We show that by providing novel tools for spatio-temporal GP modelling on graphs, we outperform pre-existing graph kernels in real-world applications that feature diffusion, oscillation, and other complicated interactions.
Decision Rule Elicitation for Domain Adaptation
Nikitin, Alexander, Kaski, Samuel
Human-in-the-loop machine learning is widely used in artificial intelligence (AI) to elicit labels for data points from experts or to provide feedback on how close the predicted results are to the target. This simplifies away all the details of the decision-making process of the expert. In this work, we allow the experts to additionally produce decision rules describing their decision-making; the rules are expected to be imperfect but to give additional information. In particular, the rules can extend to new distributions, and hence enable significantly improving performance for cases where the training and testing distributions differ, such as in domain adaptation. We apply the proposed method to lifelong learning and domain adaptation problems and discuss applications in other branches of AI, such as knowledge acquisition problems in expert systems. In simulated and real-user studies, we show that decision rule elicitation improves domain adaptation of the algorithm and helps to propagate expert's knowledge to the AI model.