Nigam, Aditya
TractoGPT: A GPT architecture for White Matter Segmentation
Goel, Anoushkrit, Singh, Simroop, Joshi, Ankita, Jha, Ranjeet Ranjan, Ahuja, Chirag, Nigam, Aditya, Bhavsar, Arnav
White matter bundle segmentation is crucial for studying brain structural connectivity, neurosurgical planning, and neurological disorders. White Matter Segmentation remains challenging due to structural similarity in streamlines, subject variability, symmetry in 2 hemispheres, etc. To address these challenges, we propose TractoGPT, a GPT-based architecture trained on streamline, cluster, and fusion data representations separately. TractoGPT is a fully-automatic method that generalizes across datasets and retains shape information of the white matter bundles. Experiments also show that TractoGPT outperforms state-of-the-art methods on average DICE, Overlap and Overreach scores. We use TractoInferno and 105HCP datasets and validate generalization across dataset.
Tract-RLFormer: A Tract-Specific RL policy based Decoder-only Transformer Network
Joshi, Ankita, Sharma, Ashutosh, Goel, Anoushkrit, Jha, Ranjeet Ranjan, Ahuja, Chirag, Bhavsar, Arnav, Nigam, Aditya
Fiber tractography is a cornerstone of neuroimaging, enabling the detailed mapping of the brain's white matter pathways through diffusion MRI. This is crucial for understanding brain connectivity and function, making it a valuable tool in neurological applications. Despite its importance, tractography faces challenges due to its complexity and susceptibility to false positives, misrepresenting vital pathways. To address these issues, recent strategies have shifted towards deep learning, utilizing supervised learning, which depends on precise ground truth, or reinforcement learning, which operates without it. In this work, we propose Tract-RLFormer, a network utilizing both supervised and reinforcement learning, in a two-stage policy refinement process that markedly improves the accuracy and generalizability across various data-sets. By employing a tract-specific approach, our network directly delineates the tracts of interest, bypassing the traditional segmentation process. Through rigorous validation on datasets such as TractoInferno, HCP, and ISMRM-2015, our methodology demonstrates a leap forward in tractography, showcasing its ability to accurately map the brain's white matter tracts.
TractoEmbed: Modular Multi-level Embedding framework for white matter tract segmentation
Goel, Anoushkrit, Singh, Bipanjit, Joshi, Ankita, Jha, Ranjeet Ranjan, Ahuja, Chirag, Nigam, Aditya, Bhavsar, Arnav
White matter tract segmentation is crucial for studying brain structural connectivity and neurosurgical planning. However, segmentation remains challenging due to issues like class imbalance between major and minor tracts, structural similarity, subject variability, symmetric streamlines between hemispheres etc. To address these challenges, we propose TractoEmbed, a modular multi-level embedding framework, that encodes localized representations through learning tasks in respective encoders. In this paper, TractoEmbed introduces a novel hierarchical streamline data representation that captures maximum spatial information at each level i.e. individual streamlines, clusters, and patches. Experiments show that TractoEmbed outperforms state-of-the-art methods in white matter tract segmentation across different datasets, and spanning various age groups. The modular framework directly allows the integration of additional embeddings in future works.
IHashNet: Iris Hashing Network based on efficient multi-index hashing
Singh, Avantika, Vashist, Chirag, Gaurav, Pratyush, Nigam, Aditya, Pratap, Rameshwar
Massive biometric deployments are pervasive in today's world. But despite the high accuracy of biometric systems, their computational efficiency degrades drastically with an increase in the database size. Thus, it is essential to index them. An ideal indexing scheme needs to generate codes that preserve the intra-subject similarity as well as inter-subject dissimilarity. Here, in this paper, we propose an iris indexing scheme using real-valued deep iris features binarized to iris bar codes (IBC) compatible with the indexing structure. Firstly, for extracting robust iris features, we have designed a network utilizing the domain knowledge of ordinal filtering and learning their nonlinear combinations. Later these real-valued features are binarized. Finally, for indexing the iris dataset, we have proposed a loss that can transform the binary feature into an improved feature compatible with the Multi-Index Hashing scheme. This loss function ensures the hamming distance equally distributed among all the contiguous disjoint sub-strings. To the best of our knowledge, this is the first work in the iris indexing domain that presents an end-to-end iris indexing structure. Experimental results on four datasets are presented to depict the efficacy of the proposed approach.
UESegNet: Context Aware Unconstrained ROI Segmentation Networks for Ear Biometric
Kamboj, Aman, Rani, Rajneesh, Nigam, Aditya, Jha, Ranjeet Ranjan
Biometric-based personal authentication systems have seen a strong demand mainly due to the increasing concern in various privacy and security applications. Although the use of each biometric trait is problem dependent, the human ear has been found to have enough discriminating characteristics to allow its use as a strong biometric measure. To locate an ear in a 2D side face image is a challenging task, numerous existing approaches have achieved significant performance, but the majority of studies are based on the constrained environment. However, ear biometrics possess a great level of difficulties in the unconstrained environment, where pose, scale, occlusion, illuminations, background clutter etc. varies to a great extent. To address the problem of ear localization in the wild, we have proposed two high-performance region of interest (ROI) segmentation models UESegNet-1 and UESegNet-2, which are fundamentally based on deep convolutional neural networks and primarily uses contextual information to localize ear in the unconstrained environment. Additionally, we have applied state-of-the-art deep learning models viz; FRCNN (Faster Region Proposal Network) and SSD (Single Shot MultiBox Detecor) for ear localization task. To test the model's generalization, they are evaluated on six different benchmark datasets viz; IITD, IITK, USTB-DB3, UND-E, UND-J2 and UBEAR, all of which contain challenging images. The performance of the models is compared on the basis of object detection performance measure parameters such as IOU (Intersection Over Union), Accuracy, Precision, Recall, and F1-Score. It has been observed that the proposed models UESegNet-1 and UESegNet-2 outperformed the FRCNN and SSD at higher values of IOUs i.e. an accuracy of 100\% is achieved at IOU 0.5 on majority of the databases.