Goto

Collaborating Authors

 Nicolò Colombo


Tomography of the London Underground: a Scalable Model for Origin-Destination Data

Neural Information Processing Systems

The paper addresses the classical network tomography problem of inferring local traffic given origin-destination observations. Focusing on large complex public transportation systems, we build a scalable model that exploits input-output information to estimate the unobserved link/station loads and the users' path preferences. Based on the reconstruction of the users' travel time distribution, the model is flexible enough to capture possible different path-choice strategies and correlations between users travelling on similar paths at similar times. The corresponding likelihood function is intractable for medium or large-scale networks and we propose two distinct strategies, namely the exact maximum-likelihood inference of an approximate but tractable model and the variational inference of the original intractable model. As an application of our approach, we consider the emblematic case of the London underground network, where a tap-in/tap-out system tracks the starting/exit time and location of all journeys in a day. A set of synthetic simulations and real data provided by Transport For London are used to validate and test the model on the predictions of observable and unobservable quantities.


Bayesian Semi-supervised Learning with Graph Gaussian Processes

Neural Information Processing Systems

We propose a data-efficient Gaussian process-based Bayesian approach to the semisupervised learning problem on graphs. The proposed model shows extremely competitive performance when compared to the state-of-the-art graph neural networks on semi-supervised learning benchmark experiments, and outperforms the neural networks in active learning experiments where labels are scarce. Furthermore, the model does not require a validation data set for early stopping to control over-fitting. Our model can be viewed as an instance of empirical distribution regression weighted locally by network connectivity. We further motivate the intuitive construction of the model with a Bayesian linear model interpretation where the node features are filtered by an operator related to the graph Laplacian. The method can be easily implemented by adapting off-the-shelf scalable variational inference algorithms for Gaussian processes.


Bayesian Semi-supervised Learning with Graph Gaussian Processes

Neural Information Processing Systems

We propose a data-efficient Gaussian process-based Bayesian approach to the semisupervised learning problem on graphs. The proposed model shows extremely competitive performance when compared to the state-of-the-art graph neural networks on semi-supervised learning benchmark experiments, and outperforms the neural networks in active learning experiments where labels are scarce. Furthermore, the model does not require a validation data set for early stopping to control over-fitting. Our model can be viewed as an instance of empirical distribution regression weighted locally by network connectivity. We further motivate the intuitive construction of the model with a Bayesian linear model interpretation where the node features are filtered by an operator related to the graph Laplacian. The method can be easily implemented by adapting off-the-shelf scalable variational inference algorithms for Gaussian processes.


Tomography of the London Underground: a Scalable Model for Origin-Destination Data

Neural Information Processing Systems

The paper addresses the classical network tomography problem of inferring local traffic given origin-destination observations. Focusing on large complex public transportation systems, we build a scalable model that exploits input-output information to estimate the unobserved link/station loads and the users' path preferences. Based on the reconstruction of the users' travel time distribution, the model is flexible enough to capture possible different path-choice strategies and correlations between users travelling on similar paths at similar times. The corresponding likelihood function is intractable for medium or large-scale networks and we propose two distinct strategies, namely the exact maximum-likelihood inference of an approximate but tractable model and the variational inference of the original intractable model. As an application of our approach, we consider the emblematic case of the London underground network, where a tap-in/tap-out system tracks the starting/exit time and location of all journeys in a day. A set of synthetic simulations and real data provided by Transport For London are used to validate and test the model on the predictions of observable and unobservable quantities.