Ni, Wei
Sustainable and Intelligent Public Facility Failure Management System Based on Large Language Models
Bi, Siguo, Zhang, Jilong, Ni, Wei
This paper presents a new Large Language Model (LLM)-based Smart Device Management framework, a pioneering approach designed to address the intricate challenges of managing intelligent devices within public facilities, with a particular emphasis on applications to libraries. Our framework leverages state-of-the-art LLMs to analyze and predict device failures, thereby enhancing operational efficiency and reliability. Through prototype validation in real-world library settings, we demonstrate the framework's practical applicability and its capacity to significantly reduce budgetary constraints on public facilities. The advanced and innovative nature of our model is evident from its successful implementation in prototype testing. We plan to extend the framework's scope to include a wider array of public facilities and to integrate it with cutting-edge cybersecurity technologies, such as Internet of Things (IoT) security and machine learning algorithms for threat detection and response. This will result in a comprehensive and proactive maintenance system that not only bolsters the security of intelligent devices but also utilizes machine learning for automated analysis and real-time threat mitigation. By incorporating these advanced cybersecurity elements, our framework will be well-positioned to tackle the dynamic challenges of modern public infrastructure, ensuring robust protection against potential threats and enabling facilities to anticipate and prevent failures, leading to substantial cost savings and enhanced service quality.
Overview of AI and Communication for 6G Network: Fundamentals, Challenges, and Future Research Opportunities
Cui, Qimei, You, Xiaohu, Ni, Wei, Nan, Guoshun, Zhang, Xuefei, Zhang, Jianhua, Lyu, Xinchen, Ai, Ming, Tao, Xiaofeng, Feng, Zhiyong, Zhang, Ping, Wu, Qingqing, Tao, Meixia, Huang, Yongming, Huang, Chongwen, Liu, Guangyi, Peng, Chenghui, Pan, Zhiwen, Sun, Tao, Niyato, Dusit, Chen, Tao, Khan, Muhammad Khurram, Jamalipour, Abbas, Guizani, Mohsen, Yuen, Chau
With the growing demand for seamless connectivity and intelligent communication, the integration of artificial intelligence (AI) and sixth-generation (6G) communication networks has emerged as a transformative paradigm. By embedding AI capabilities across various network layers, this integration enables optimized resource allocation, improved efficiency, and enhanced system robust performance, particularly in intricate and dynamic environments. This paper presents a comprehensive overview of AI and communication for 6G networks, with a focus on emphasizing their foundational principles, inherent challenges, and future research opportunities. We first review the integration of AI and communications in the context of 6G, exploring the driving factors behind incorporating AI into wireless communications, as well as the vision for the convergence of AI and 6G. The discourse then transitions to a detailed exposition of the envisioned integration of AI within 6G networks, delineated across three progressive developmental stages. The first stage, AI for Network, focuses on employing AI to augment network performance, optimize efficiency, and enhance user service experiences. The second stage, Network for AI, highlights the role of the network in facilitating and buttressing AI operations and presents key enabling technologies, such as digital twins for AI and semantic communication. In the final stage, AI as a Service, it is anticipated that future 6G networks will innately provide AI functions as services, supporting application scenarios like immersive communication and intelligent industrial robots. In addition, we conduct an in-depth analysis of the critical challenges faced by the integration of AI and communications in 6G. Finally, we outline promising future research opportunities that are expected to drive the development and refinement of AI and 6G communications.
Multi-Task Semantic Communication With Graph Attention-Based Feature Correlation Extraction
Yu, Xi, Lv, Tiejun, Li, Weicai, Ni, Wei, Niyato, Dusit, Hossain, Ekram
Multi-task semantic communication can serve multiple learning tasks using a shared encoder model. Existing models have overlooked the intricate relationships between features extracted during an encoding process of tasks. This paper presents a new graph attention inter-block (GAI) module to the encoder/transmitter of a multi-task semantic communication system, which enriches the features for multiple tasks by embedding the intermediate outputs of encoding in the features, compared to the existing techniques. The key idea is that we interpret the outputs of the intermediate feature extraction blocks of the encoder as the nodes of a graph to capture the correlations of the intermediate features. Another important aspect is that we refine the node representation using a graph attention mechanism to extract the correlations and a multi-layer perceptron network to associate the node representations with different tasks. Consequently, the intermediate features are weighted and embedded into the features transmitted for executing multiple tasks at the receiver. Experiments demonstrate that the proposed model surpasses the most competitive and publicly available models by 11.4% on the CityScapes 2Task dataset and outperforms the established state-of-the-art by 3.97% on the NYU V2 3Task dataset, respectively, when the bandwidth ratio of the communication channel (i.e., compression level for transmission over the channel) is as constrained as 1 12 .
Tabular Data Synthesis with Differential Privacy: A Survey
Yang, Mengmeng, Chi, Chi-Hung, Lam, Kwok-Yan, Feng, Jie, Guo, Taolin, Ni, Wei
Data sharing is a prerequisite for collaborative innovation, enabling organizations to leverage diverse datasets for deeper insights. In real-world applications like FinTech and Smart Manufacturing, transactional data, often in tabular form, are generated and analyzed for insight generation. However, such datasets typically contain sensitive personal/business information, raising privacy concerns and regulatory risks. Data synthesis tackles this by generating artificial datasets that preserve the statistical characteristics of real data, removing direct links to individuals. However, attackers can still infer sensitive information using background knowledge. Differential privacy offers a solution by providing provable and quantifiable privacy protection. Consequently, differentially private data synthesis has emerged as a promising approach to privacy-aware data sharing. This paper provides a comprehensive overview of existing differentially private tabular data synthesis methods, highlighting the unique challenges of each generation model for generating tabular data under differential privacy constraints. We classify the methods into statistical and deep learning-based approaches based on their generation models, discussing them in both centralized and distributed environments. We evaluate and compare those methods within each category, highlighting their strengths and weaknesses in terms of utility, privacy, and computational complexity. Additionally, we present and discuss various evaluation methods for assessing the quality of the synthesized data, identify research gaps in the field and directions for future research.
A Novel Framework of Horizontal-Vertical Hybrid Federated Learning for EdgeIoT
Li, Kai, Liang, Yilei, Yuan, Xin, Ni, Wei, Crowcroft, Jon, Yuen, Chau, Akan, Ozgur B.
This letter puts forth a new hybrid horizontal-vertical federated learning (HoVeFL) for mobile edge computing-enabled Internet of Things (EdgeIoT). In this framework, certain EdgeIoT devices train local models using the same data samples but analyze disparate data features, while the others focus on the same features using non-independent and identically distributed (non-IID) data samples. Thus, even though the data features are consistent, the data samples vary across devices. The proposed HoVeFL formulates the training of local and global models to minimize the global loss function. Performance evaluations on CIFAR-10 and SVHN datasets reveal that the testing loss of HoVeFL with 12 horizontal FL devices and six vertical FL devices is 5.5% and 25.2% higher, respectively, compared to a setup with six horizontal FL devices and 12 vertical FL devices.
Towards Dynamic Resource Allocation and Client Scheduling in Hierarchical Federated Learning: A Two-Phase Deep Reinforcement Learning Approach
Chen, Xiaojing, Li, Zhenyuan, Ni, Wei, Wang, Xin, Zhang, Shunqing, Sun, Yanzan, Xu, Shugong, Pei, Qingqi
Federated learning (FL) is a viable technique to train a shared machine learning model without sharing data. Hierarchical FL (HFL) system has yet to be studied regrading its multiple levels of energy, computation, communication, and client scheduling, especially when it comes to clients relying on energy harvesting to power their operations. This paper presents a new two-phase deep deterministic policy gradient (DDPG) framework, referred to as ``TP-DDPG'', to balance online the learning delay and model accuracy of an FL process in an energy harvesting-powered HFL system. The key idea is that we divide optimization decisions into two groups, and employ DDPG to learn one group in the first phase, while interpreting the other group as part of the environment to provide rewards for training the DDPG in the second phase. Specifically, the DDPG learns the selection of participating clients, and their CPU configurations and the transmission powers. A new straggler-aware client association and bandwidth allocation (SCABA) algorithm efficiently optimizes the other decisions and evaluates the reward for the DDPG. Experiments demonstrate that with substantially reduced number of learnable parameters, the TP-DDPG can quickly converge to effective polices that can shorten the training time of HFL by 39.4% compared to its benchmarks, when the required test accuracy of HFL is 0.9.
A Novel Defense Against Poisoning Attacks on Federated Learning: LayerCAM Augmented with Autoencoder
Zheng, Jingjing, Yuan, Xin, Li, Kai, Ni, Wei, Tovar, Eduardo, Crowcroft, Jon
Recent attacks on federated learning (FL) can introduce malicious model updates that circumvent widely adopted Euclidean distance-based detection methods. This paper proposes a novel defense strategy, referred to as LayerCAM-AE, designed to counteract model poisoning in federated learning. The LayerCAM-AE puts forth a new Layer Class Activation Mapping (LayerCAM) integrated with an autoencoder (AE), significantly enhancing detection capabilities. Specifically, LayerCAM-AE generates a heat map for each local model update, which is then transformed into a more compact visual format. The autoencoder is designed to process the LayerCAM heat maps from the local model updates, improving their distinctiveness and thereby increasing the accuracy in spotting anomalous maps and malicious local models. To address the risk of misclassifications with LayerCAM-AE, a voting algorithm is developed, where a local model update is flagged as malicious if its heat maps are consistently suspicious over several rounds of communication. Extensive tests of LayerCAM-AE on the SVHN and CIFAR-100 datasets are performed under both Independent and Identically Distributed (IID) and non-IID settings in comparison with existing ResNet-50 and REGNETY-800MF defense models. Experimental results show that LayerCAM-AE increases detection rates (Recall: 1.0, Precision: 1.0, FPR: 0.0, Accuracy: 1.0, F1 score: 1.0, AUC: 1.0) and test accuracy in FL, surpassing the performance of both the ResNet-50 and REGNETY-800MF. Our code is available at: https://github.com/jjzgeeks/LayerCAM-AE
Decentralized Federated Learning Over Imperfect Communication Channels
Li, Weicai, Lv, Tiejun, Ni, Wei, Zhao, Jingbo, Hossain, Ekram, Poor, H. Vincent
This paper analyzes the impact of imperfect communication channels on decentralized federated learning (D-FL) and subsequently determines the optimal number of local aggregations per training round, adapting to the network topology and imperfect channels. We start by deriving the bias of locally aggregated D-FL models under imperfect channels from the ideal global models requiring perfect channels and aggregations. The bias reveals that excessive local aggregations can accumulate communication errors and degrade convergence. Another important aspect is that we analyze a convergence upper bound of D-FL based on the bias. By minimizing the bound, the optimal number of local aggregations is identified to balance a trade-off with accumulation of communication errors in the absence of knowledge of the channels. With this knowledge, the impact of communication errors can be alleviated, allowing the convergence upper bound to decrease throughout aggregations. Experiments validate our convergence analysis and also identify the optimal number of local aggregations on two widely considered image classification tasks. It is seen that D-FL, with an optimal number of local aggregations, can outperform its potential alternatives by over 10% in training accuracy.
Dual-Segment Clustering Strategy for Federated Learning in Heterogeneous Environments
Sun, Pengcheng, Liu, Erwu, Ni, Wei, Yu, Kanglei, Wang, Rui, Jamalipour, Abbas
Federated learning (FL) is a distributed machine learning paradigm with high efficiency and low communication load, only transmitting parameters or gradients of network. However, the non-independent and identically distributed (Non-IID) data characteristic has a negative impact on this paradigm. Furthermore, the heterogeneity of communication quality will significantly affect the accuracy of parameter transmission, causing a degradation in the performance of the FL system or even preventing its convergence. This letter proposes a dual-segment clustering (DSC) strategy, which first clusters the clients according to the heterogeneous communication conditions and then performs a second clustering by the sample size and label distribution, so as to solve the problem of data and communication heterogeneity. Experimental results show that the DSC strategy proposed in this letter can improve the convergence rate of FL, and has superiority on accuracy in a heterogeneous environment compared with the classical algorithm of cluster.
Leverage Variational Graph Representation For Model Poisoning on Federated Learning
Li, Kai, Yuan, Xin, Zheng, Jingjing, Ni, Wei, Dressler, Falko, Jamalipour, Abbas
This paper puts forth a new training data-untethered model poisoning (MP) attack on federated learning (FL). The new MP attack extends an adversarial variational graph autoencoder (VGAE) to create malicious local models based solely on the benign local models overheard without any access to the training data of FL. Such an advancement leads to the VGAE-MP attack that is not only efficacious but also remains elusive to detection. VGAE-MP attack extracts graph structural correlations among the benign local models and the training data features, adversarially regenerates the graph structure, and generates malicious local models using the adversarial graph structure and benign models' features. Moreover, a new attacking algorithm is presented to train the malicious local models using VGAE and sub-gradient descent, while enabling an optimal selection of the benign local models for training the VGAE. Experiments demonstrate a gradual drop in FL accuracy under the proposed VGAE-MP attack and the ineffectiveness of existing defense mechanisms in detecting the attack, posing a severe threat to FL.