Plotting

 Ni, Lin


Enhancing Student Performance Prediction on Learnersourced Questions with SGNN-LLM Synergy

arXiv.org Artificial Intelligence

Learnersourcing offers great potential for scalable education through student content creation. However, predicting student performance on learnersourced questions, which is essential for personalizing the learning experience, is challenging due to the inherent noise in student-generated data. Moreover, while conventional graph-based methods can capture the complex network of student and question interactions, they often fall short under cold start conditions where limited student engagement with questions yields sparse data. To address both challenges, we introduce an innovative strategy that synergizes the potential of integrating Signed Graph Neural Networks (SGNNs) and Large Language Model (LLM) embeddings. Our methodology employs a signed bipartite graph to comprehensively model student answers, complemented by a contrastive learning framework that enhances noise resilience. Furthermore, LLM's contribution lies in generating foundational question embeddings, proving especially advantageous in addressing cold start scenarios characterized by limited graph data. Validation across five real-world datasets sourced from the PeerWise platform underscores our approach's effectiveness. Our method outperforms baselines, showcasing enhanced predictive accuracy and robustness.


DeepQR: Neural-based Quality Ratings for Learnersourced Multiple-Choice Questions

arXiv.org Artificial Intelligence

Automated question quality rating (AQQR) aims to evaluate question quality through computational means, thereby addressing emerging challenges in online learnersourced question repositories. Existing methods for AQQR rely solely on explicitly-defined criteria such as readability and word count, while not fully utilising the power of state-of-the-art deep-learning techniques. We propose DeepQR, a novel neural-network model for AQQR that is trained using multiple-choice-question (MCQ) datasets collected from PeerWise, a widely-used learnersourcing platform. Along with designing DeepQR, we investigate models based on explicitly-defined features, or semantic features, or both. We also introduce a self-attention mechanism to capture semantic correlations between MCQ components, and a contrastive-learning approach to acquire question representations using quality ratings. Extensive experiments on datasets collected from eight university-level courses illustrate that DeepQR has superior performance over six comparative models.