Goto

Collaborating Authors

 Ni, Fanghao


Deep Reinforcement Learning-based Obstacle Avoidance for Robot Movement in Warehouse Environments

arXiv.org Artificial Intelligence

At present, in most warehouse environments, the accumulation of goods is complex, and the management personnel in the control of goods at the same time with the warehouse mobile robot trajectory interaction, the traditional mobile robot can not be very good on the goods and pedestrians to feed back the correct obstacle avoidance strategy, in order to control the mobile robot in the warehouse environment efficiently and friendly to complete the obstacle avoidance task, this paper proposes a deep reinforcement learning based on the warehouse environment, the mobile robot obstacle avoidance Algorithm. Firstly, for the insufficient learning ability of the value function network in the deep reinforcement learning algorithm, the value function network is improved based on the pedestrian interaction, the interaction information between pedestrians is extracted through the pedestrian angle grid, and the temporal features of individual pedestrians are extracted through the attention mechanism, so that we can learn to obtain the relative importance of the current state and the historical trajectory state as well as the joint impact on the robot's obstacle avoidance strategy, which provides an opportunity for the learning of multi-layer perceptual machines afterwards. Secondly, the reward function of reinforcement learning is designed based on the spatial behaviour of pedestrians, and the robot is punished for the state where the angle changes too much, so as to achieve the requirement of comfortable obstacle avoidance; Finally, the feasibility and effectiveness of the deep reinforcement learning-based mobile robot obstacle avoidance algorithm in the warehouse environment in the complex environment of the warehouse are verified through simulation experiments.


Rumor Detection with a novel graph neural network approach

arXiv.org Artificial Intelligence

The wide spread of rumors on social media has caused a negative impact on people's daily life, leading to potential panic, fear, and mental health problems for the public. How to debunk rumors as early as possible remains a challenging problem. Existing studies mainly leverage information propagation structure to detect rumors, while very few works focus on correlation among users that they may coordinate to spread rumors in order to gain large popularity. In this paper, we propose a new detection model, that jointly learns both the representations of user correlation and information propagation to detect rumors on social media. Specifically, we leverage graph neural networks to learn the representations of user correlation from a bipartite graph that describes the correlations between users and source tweets, and the representations of information propagation with a tree structure. Then we combine the learned representations from these two modules to classify the rumors. Since malicious users intend to subvert our model after deployment, we further develop a greedy attack scheme to analyze the cost of three adversarial attacks: graph attack, comment attack, and joint attack. Evaluation results on two public datasets illustrate that the proposed MODEL outperforms the state-of-the-art rumor detection models. We also demonstrate our method performs well for early rumor detection. Moreover, the proposed detection method is more robust to adversarial attacks compared to the best existing method. Importantly, we show that it requires a high cost for attackers to subvert user correlation pattern, demonstrating the importance of considering user correlation for rumor detection.


Enhancing Convergence in Federated Learning: A Contribution-Aware Asynchronous Approach

arXiv.org Artificial Intelligence

Federated Learning (FL) is a distributed machine learning paradigm that allows clients to train models on their data while preserving their privacy. FL algorithms, such as Federated Averaging (FedAvg) and its variants, have been shown to converge well in many scenarios. However, these methods require clients to upload their local updates to the server in a synchronous manner, which can be slow and unreliable in realistic FL settings. To address this issue, researchers have developed asynchronous FL methods that allow clients to continue training on their local data using a stale global model. However, most of these methods simply aggregate all of the received updates without considering their relative contributions, which can slow down convergence. In this paper, we propose a contribution-aware asynchronous FL method that takes into account the staleness and statistical heterogeneity of the received updates. Our method dynamically adjusts the contribution of each update based on these factors, which can speed up convergence compared to existing methods.