Goto

Collaborating Authors

 Nguyen, Van-Dinh


HierSFL: Local Differential Privacy-aided Split Federated Learning in Mobile Edge Computing

arXiv.org Artificial Intelligence

Federated Learning is a promising approach for learning from user data while preserving data privacy. However, the high requirements of the model training process make it difficult for clients with limited memory or bandwidth to participate. To tackle this problem, Split Federated Learning is utilized, where clients upload their intermediate model training outcomes to a cloud server for collaborative server-client model training. This methodology facilitates resource-constrained clients' participation in model training but also increases the training time and communication overhead. To overcome these limitations, we propose a novel algorithm, called Hierarchical Split Federated Learning (HierSFL), that amalgamates models at the edge and cloud phases, presenting qualitative directives for determining the best aggregation timeframes to reduce computation and communication expenses. By implementing local differential privacy at the client and edge server levels, we enhance privacy during local model parameter updates. Our experiments using CIFAR-10 and MNIST datasets show that HierSFL outperforms standard FL approaches with better training accuracy, training time, and communication-computing trade-offs. HierSFL offers a promising solution to mobile edge computing's challenges, ultimately leading to faster content delivery and improved mobile service quality.


Network-Aided Intelligent Traffic Steering in 6G O-RAN: A Multi-Layer Optimization Framework

arXiv.org Artificial Intelligence

To enable an intelligent, programmable and multi-vendor radio access network (RAN) for 6G networks, considerable efforts have been made in standardization and development of open RAN (O-RAN). So far, however, the applicability of O-RAN in controlling and optimizing RAN functions has not been widely investigated. In this paper, we jointly optimize the flow-split distribution, congestion control and scheduling (JFCS) to enable an intelligent traffic steering application in O-RAN. Combining tools from network utility maximization and stochastic optimization, we introduce a multi-layer optimization framework that provides fast convergence, long-term utility-optimality and significant delay reduction compared to the state-of-the-art and baseline RAN approaches. Our main contributions are three-fold: i) we propose the novel JFCS framework to efficiently and adaptively direct traffic to appropriate radio units; ii) we develop low-complexity algorithms based on the reinforcement learning, inner approximation and bisection search methods to effectively solve the JFCS problem in different time scales; and iii) the rigorous theoretical performance results are analyzed to show that there exists a scaling factor to improve the tradeoff between delay and utility-optimization. Collectively, the insights in this work will open the door towards fully automated networks with enhanced control and flexibility. Numerical results are provided to demonstrate the effectiveness of the proposed algorithms in terms of the convergence rate, long-term utility-optimality and delay reduction.


Task-oriented Communication Design in Cyber-Physical Systems: A Survey on Theory and Applications

arXiv.org Artificial Intelligence

Communications system design has been traditionally guided by task-agnostic principles, which aim at efficiently transmitting as many correct bits as possible through a given channel. However, in the era of cyber-physical systems, the effectiveness of communications is not dictated simply by the bit rate, but most importantly by the efficient completion of the task in hand, e.g., controlling remotely a robot, automating a production line or collaboratively sensing through a drone swarm. In parallel, it is projected that by 2023, half of the worldwide network connections will be among machines rather than humans. In this context, it is crucial to establish a new paradigm for designing communications strategies for multi-agent cyber-physical systems. This is a daunting task, since it requires a combination of principles from information, communication, control theories and computer science in order to formalize a general framework for task-oriented communication design. In this direction, this paper reviews and structures the relevant theoretical work across a wide range of scientific communities. Subsequently, it proposes a general conceptual framework for task-oriented communication design, along with its specializations according to the targeted use case. Furthermore, it provides a survey of relevant contributions in dominant applications, such as industrial internet of things, multi-UAV systems, tactile internet, autonomous vehicles, distributed learning systems, smart manufacturing plants and 5G and beyond self-organizing networks. Finally, it highlights the most important open research topics from both the theoretical framework and application points of view.


Optimal Privacy Preserving for Federated Learning in Mobile Edge Computing

arXiv.org Artificial Intelligence

Federated Learning (FL) with quantization and deliberately added noise over wireless networks is a promising approach to preserve user differential privacy (DP) while reducing wireless resources. Specifically, an FL process can be fused with quantized Binomial mechanism-based updates contributed by multiple users. However, optimizing quantization parameters, communication resources (e.g., transmit power, bandwidth, and quantization bits), and the added noise to guarantee the DP requirement and performance of the learned FL model remains an open and challenging problem. This article aims to jointly optimize the quantization and Binomial mechanism parameters and communication resources to maximize the convergence rate under the constraints of the wireless network and DP requirement. To that end, we first derive a novel DP budget estimation of the FL with quantization/noise that is tighter than the state-of-the-art bound. We then provide a theoretical bound on the convergence rate. This theoretical bound is decomposed into two components, including the variance of the global gradient and the quadratic bias that can be minimized by optimizing the communication resources, and quantization/noise parameters. The resulting optimization turns out to be a Mixed-Integer Non-linear Programming (MINLP) problem. To tackle it, we first transform this MINLP problem into a new problem whose solutions are proved to be the optimal solutions of the original one. We then propose an approximate algorithm to solve the transformed problem with an arbitrary relative error guarantee. Extensive simulations show that under the same wireless resource constraints and DP protection requirements, the proposed approximate algorithm achieves an accuracy close to the accuracy of the conventional FL without quantization/noise. The results can achieve a higher convergence rate while preserving users' privacy.


Edge Computing for Semantic Communication Enabled Metaverse: An Incentive Mechanism Design

arXiv.org Artificial Intelligence

Semantic communication (SemCom) and edge computing are two disruptive solutions to address emerging requirements of huge data communication, bandwidth efficiency and low latency data processing in Metaverse. However, edge computing resources are often provided by computing service providers and thus it is essential to design appealingly incentive mechanisms for the provision of limited resources. Deep learning (DL)- based auction has recently proposed as an incentive mechanism that maximizes the revenue while holding important economic properties, i.e., individual rationality and incentive compatibility. Therefore, in this work, we introduce the design of the DLbased auction for the computing resource allocation in SemComenabled Metaverse. First, we briefly introduce the fundamentals and challenges of Metaverse. Second, we present the preliminaries of SemCom and edge computing. Third, we review various incentive mechanisms for edge computing resource trading. Fourth, we present the design of the DL-based auction for edge resource allocation in SemCom-enabled Metaverse. Simulation results demonstrate that the DL-based auction improves the revenue while nearly satisfying the individual rationality and incentive compatibility constraints.


FedFog: Network-Aware Optimization of Federated Learning over Wireless Fog-Cloud Systems

arXiv.org Artificial Intelligence

Federated learning (FL) is capable of performing large distributed machine learning tasks across multiple edge users by periodically aggregating trained local parameters. To address key challenges of enabling FL over a wireless fog-cloud system (e.g., non-i.i.d. data, users' heterogeneity), we first propose an efficient FL algorithm based on Federated Averaging (called FedFog) to perform the local aggregation of gradient parameters at fog servers and global training update at the cloud. Next, we employ FedFog in wireless fog-cloud systems by investigating a novel network-aware FL optimization problem that strikes the balance between the global loss and completion time. An iterative algorithm is then developed to obtain a precise measurement of the system performance, which helps design an efficient stopping criteria to output an appropriate number of global rounds. To mitigate the straggler effect, we propose a flexible user aggregation strategy that trains fast users first to obtain a certain level of accuracy before allowing slow users to join the global training updates. Extensive numerical results using several real-world FL tasks are provided to verify the theoretical convergence of FedFog. We also show that the proposed co-design of FL and communication is essential to substantially improve resource utilization while achieving comparable accuracy of the learning model.