Goto

Collaborating Authors

 Nguyen, Tung Thanh


Adaptive Prompting for Continual Relation Extraction: A Within-Task Variance Perspective

arXiv.org Artificial Intelligence

To address catastrophic forgetting in Continual Relation Extraction (CRE), many current approaches rely on memory buffers to rehearse previously learned knowledge while acquiring new tasks. Recently, prompt-based methods have emerged as potent alternatives to rehearsal-based strategies, demonstrating strong empirical performance. However, upon analyzing existing prompt-based approaches for CRE, we identified several critical limitations, such as inaccurate prompt selection, inadequate mechanisms for mitigating forgetting in shared parameters, and suboptimal handling of cross-task and within-task variances. To overcome these challenges, we draw inspiration from the relationship between prefix-tuning and mixture of experts, proposing a novel approach that employs a prompt pool for each task, capturing variations within each task while enhancing cross-task variances. Furthermore, we incorporate a generative model to consolidate prior knowledge within shared parameters, eliminating the need for explicit data storage. Extensive experiments validate the efficacy of our approach, demonstrating superior performance over state-of-the-art prompt-based and rehearsal-free methods in continual relation extraction.


Tracking Software Security Topics

arXiv.org Artificial Intelligence

Software security incidents occur everyday and thousands of software security reports are announced each month. Thus, it is difficult for software security researchers, engineers, and other stakeholders to follow software security topics of their interests in real-time. In this paper, we propose, SOSK, a novel tool for this problem. SOSK allows a user to import a collection of software security reports. It pre-processes and extracts the most important keywords from the textual description of the reports. Based on the similarity of embedding vectors of keywords, SOSK can expand and/or refine a keyword set from a much smaller set of user-provided keywords. Thus, SOSK allows users to define any topic of their interests and retrieve security reports relevant to that topic effectively. Our preliminary evaluation shows that SOSK can expand keywords and retrieve reports relevant to user requests.


Defect Prediction with Content-based Features

arXiv.org Artificial Intelligence

Traditional defect prediction approaches often use metrics that measure the complexity of the design or implementing code of a software system, such as the number of lines of code in a source file. In this paper, we explore a different approach based on content of source code. Our key assumption is that source code of a software system contains information about its technical aspects and those aspects might have different levels of defect-proneness. Thus, content-based features such as words, topics, data types, and package names extracted from a source code file could be used to predict its defects. We have performed an extensive empirical evaluation and found that: i) such content-based features have higher predictive power than code complexity metrics and ii) the use of feature selection, reduction, and combination further improves the prediction performance.