Goto

Collaborating Authors

 Nguyen, Tri


Momentum Contrastive Learning with Enhanced Negative Sampling and Hard Negative Filtering

arXiv.org Artificial Intelligence

Contrastive learning has become pivotal in unsupervised representation learning, with frameworks like Momentum Contrast (MoCo) effectively utilizing large negative sample sets to extract discriminative features. However, traditional approaches often overlook the full potential of key embeddings and are susceptible to performance degradation from noisy negative samples in the memory bank. This study addresses these challenges by proposing an enhanced contrastive learning framework that incorporates two key innovations. First, we introduce a dual-view loss function, which ensures balanced optimization of both query and key embeddings, improving representation quality. Second, we develop a selective negative sampling strategy that emphasizes the most challenging negatives based on cosine similarity, mitigating the impact of noise and enhancing feature discrimination. Extensive experiments demonstrate that our framework achieves superior performance on downstream tasks, delivering robust and well-structured representations. These results highlight the potential of optimized contrastive mechanisms to advance unsupervised learning and extend its applicability across domains such as computer vision and natural language processing


GenQ: Automated Question Generation to Support Caregivers While Reading Stories with Children

arXiv.org Artificial Intelligence

When caregivers ask open--ended questions to motivate dialogue with children, it facilitates the child's reading comprehension skills.Although there is scope for use of technological tools, referred here as "intelligent tutoring systems", to scaffold this process, it is currently unclear whether existing intelligent systems that generate human--language like questions is beneficial. Additionally, training data used in the development of these automated question generation systems is typically sourced without attention to demographics, but people with different cultural backgrounds may ask different questions. As a part of a broader project to design an intelligent reading support app for Latinx children, we crowdsourced questions from Latinx caregivers and noncaregivers as well as caregivers and noncaregivers from other demographics. We examine variations in question--asking within this dataset mediated by individual, cultural, and contextual factors. We then design a system that automatically extracts templates from this data to generate open--ended questions that are representative of those asked by Latinx caregivers.


Deep Learning From Crowdsourced Labels: Coupled Cross-entropy Minimization, Identifiability, and Regularization

arXiv.org Artificial Intelligence

Using noisy crowdsourced labels from multiple annotators, a deep learning-based end-to-end (E2E) system aims to learn the label correction mechanism and the neural classifier simultaneously. To this end, many E2E systems concatenate the neural classifier with multiple annotator-specific ``label confusion'' layers and co-train the two parts in a parameter-coupled manner. The formulated coupled cross-entropy minimization (CCEM)-type criteria are intuitive and work well in practice. Nonetheless, theoretical understanding of the CCEM criterion has been limited. The contribution of this work is twofold: First, performance guarantees of the CCEM criterion are presented. Our analysis reveals for the first time that the CCEM can indeed correctly identify the annotators' confusion characteristics and the desired ``ground-truth'' neural classifier under realistic conditions, e.g., when only incomplete annotator labeling and finite samples are available. Second, based on the insights learned from our analysis, two regularized variants of the CCEM are proposed. The regularization terms provably enhance the identifiability of the target model parameters in various more challenging cases. A series of synthetic and real data experiments are presented to showcase the effectiveness of our approach.


Deep Clustering with Incomplete Noisy Pairwise Annotations: A Geometric Regularization Approach

arXiv.org Artificial Intelligence

The recent integration of deep learning and pairwise similarity annotation-based constrained clustering -- i.e., $\textit{deep constrained clustering}$ (DCC) -- has proven effective for incorporating weak supervision into massive data clustering: Less than 1% of pair similarity annotations can often substantially enhance the clustering accuracy. However, beyond empirical successes, there is a lack of understanding of DCC. In addition, many DCC paradigms are sensitive to annotation noise, but performance-guaranteed noisy DCC methods have been largely elusive. This work first takes a deep look into a recently emerged logistic loss function of DCC, and characterizes its theoretical properties. Our result shows that the logistic DCC loss ensures the identifiability of data membership under reasonable conditions, which may shed light on its effectiveness in practice. Building upon this understanding, a new loss function based on geometric factor analysis is proposed to fend against noisy annotations. It is shown that even under $\textit{unknown}$ annotation confusions, the data membership can still be $\textit{provably}$ identified under our proposed learning criterion. The proposed approach is tested over multiple datasets to validate our claims.


The XPRESS Challenge: Xray Projectomic Reconstruction -- Extracting Segmentation with Skeletons

arXiv.org Artificial Intelligence

The wiring and connectivity of neurons form a structural basis for the function of the nervous system. Advances in volume electron microscopy (EM) and image segmentation have enabled mapping of circuit diagrams (connectomics) within local regions of the mouse brain. However, applying volume EM over the whole brain is not currently feasible due to technological challenges. As a result, comprehensive maps of long-range connections between brain regions are lacking. Recently, we demonstrated that X-ray holographic nanotomography (XNH) can provide high-resolution images of brain tissue at a much larger scale than EM. In particular, XNH is wellsuited to resolve large, myelinated axon tracts (white matter) that make up the bulk of long-range connections (projections) and are critical for inter-region communication. Thus, XNH provides an imaging solution for brain-wide projectomics. However, because XNH data is typically collected at lower resolutions and larger fields-of-view than EM, accurate segmentation of XNH images remains an important challenge that we present here. In this task, we provide volumetric XNH images of cortical white matter axons from the mouse brain along with ground truth annotations for axon trajectories. Manual voxel-wise annotation of ground truth is a time-consuming bottleneck for training segmentation networks. On the other hand, skeleton-based ground truth is much faster to annotate, and sufficient to determine connectivity. Therefore, we encourage participants to develop methods to leverage skeleton-based training. To this end, we provide two types of ground-truth annotations: a small volume of voxel-wise annotations and a larger volume with skeleton-based annotations. Entries will be evaluated on how accurately the submitted segmentations agree with the ground-truth skeleton annotations.


Autonomy and Intelligence in the Computing Continuum: Challenges, Enablers, and Future Directions for Orchestration

arXiv.org Artificial Intelligence

Future AI applications require performance, reliability and privacy that the existing, cloud-dependant system architectures cannot provide. In this article, we study orchestration in the device-edge-cloud continuum, and focus on edge AI for resource orchestration. We claim that to support the constantly growing requirements of intelligent applications in the device-edge-cloud computing continuum, resource orchestration needs to embrace edge AI and emphasize local autonomy and intelligence. To justify the claim, we provide a general definition for continuum orchestration, and look at how current and emerging orchestration paradigms are suitable for the computing continuum. We describe certain major emerging research themes that may affect future orchestration, and provide an early vision of an orchestration paradigm that embraces those research themes. Finally, we survey current key edge AI methods and look at how they may contribute into fulfilling the vision of future continuum orchestration.


Uncovering dark matter density profiles in dwarf galaxies with graph neural networks

arXiv.org Artificial Intelligence

Dwarf galaxies are small, dark matter-dominated galaxies, some of which are embedded within the Milky Way. Their lack of baryonic matter (e.g., stars and gas) makes them perfect test beds for probing the properties of dark matter -- understanding the spatial dark matter distribution in these systems can be used to constrain microphysical dark matter interactions that influence the formation and evolution of structures in our Universe. We introduce a new method that leverages simulation-based inference and graph-based machine learning in order to infer the dark matter density profiles of dwarf galaxies from observable kinematics of stars gravitationally bound to these systems. Our approach aims to address some of the limitations of established methods based on dynamical Jeans modeling. We show that this novel method can place stronger constraints on dark matter profiles and, consequently, has the potential to weigh in on some of the ongoing puzzles associated with the small-scale structure of dark matter halos, such as the core-cusp discrepancy.


Memory-Efficient Convex Optimization for Self-Dictionary Separable Nonnegative Matrix Factorization: A Frank-Wolfe Approach

arXiv.org Artificial Intelligence

Nonnegative matrix factorization (NMF) often relies on the separability condition for tractable algorithm design. Separability-based NMF is mainly handled by two types of approaches, namely, greedy pursuit and convex programming. A notable convex NMF formulation is the so-called self-dictionary multiple measurement vectors (SD-MMV), which can work without knowing the matrix rank a priori, and is arguably more resilient to error propagation relative to greedy pursuit. However, convex SD-MMV renders a large memory cost that scales quadratically with the problem size. This memory challenge has been around for a decade, and a major obstacle for applying convex SD-MMV to big data analytics. This work proposes a memory-efficient algorithm for convex SD-MMV. Our algorithm capitalizes on the special update rules of a classic algorithm from the 1950s, namely, the Frank-Wolfe (FW) algorithm. It is shown that, under reasonable conditions, the FW algorithm solves the noisy SD-MMV problem with a memory cost that grows linearly with the amount of data. To handle noisier scenarios, a smoothed group sparsity regularizer is proposed to improve robustness while maintaining the low memory footprint with guarantees. The proposed approach presents the first linear memory complexity algorithmic framework for convex SD-MMV based NMF. The method is tested over a couple of unsupervised learning tasks, i.e., text mining and community detection, to showcase its effectiveness and memory efficiency.


Applications and Techniques for Fast Machine Learning in Science

arXiv.org Artificial Intelligence

In this community review report, we discuss applications and techniques for fast machine learning (ML) in science -- the concept of integrating power ML methods into the real-time experimental data processing loop to accelerate scientific discovery. The material for the report builds on two workshops held by the Fast ML for Science community and covers three main areas: applications for fast ML across a number of scientific domains; techniques for training and implementing performant and resource-efficient ML algorithms; and computing architectures, platforms, and technologies for deploying these algorithms. We also present overlapping challenges across the multiple scientific domains where common solutions can be found. This community report is intended to give plenty of examples and inspiration for scientific discovery through integrated and accelerated ML solutions. This is followed by a high-level overview and organization of technical advances, including an abundance of pointers to source material, which can enable these breakthroughs.