Nguyen, Minh-Van
Sing-On-Your-Beat: Simple Text-Controllable Accompaniment Generations
Trinh, Quoc-Huy, Nguyen, Minh-Van, Mau, Trong-Hieu Nguyen, Tran, Khoa, Do, Thanh
Singing is one of the most cherished forms of human entertainment. However, creating a beautiful song requires an accompaniment that complements the vocals and aligns well with the song instruments and genre. With advancements in deep learning, previous research has focused on generating suitable accompaniments but often lacks precise alignment with the desired instrumentation and genre. To address this, we propose a straightforward method that enables control over the accompaniment through text prompts, allowing the generation of music that complements the vocals and aligns with the song instrumental and genre requirements. Through extensive experiments, we successfully generate 10-second accompaniments using vocal input and text control.
ALGNet: Attention Light Graph Memory Network for Medical Recommendation System
Nguyen, Minh-Van, Nguyen, Duy-Thinh, Trinh, Quoc-Huy, Le, Bac-Hoai
Medication recommendation is a vital task for improving patient care and reducing adverse events. However, existing methods often fail to capture the complex and dynamic relationships among patient medical records, drug efficacy and safety, and drug-drug interactions (DDI). In this paper, we propose ALGNet, a novel model that leverages light graph convolutional networks (LGCN) and augmentation memory networks (AMN) to enhance medication recommendation. LGCN can efficiently encode the patient records and the DDI graph into low-dimensional embeddings, while AMN can augment the patient representation with external knowledge from a memory module. We evaluate our model on the MIMIC-III dataset and show that it outperforms several baselines in terms of recommendation accuracy and DDI avoidance. We also conduct an ablation study to analyze the effects of different components of our model. Our results demonstrate that ALGNet can achieve superior performance with less computation and more interpretability. The implementation of this paper can be found at: https://github.com/huyquoctrinh/ALGNet.