Nguyen, Khuong
Reusable Slotwise Mechanisms
Nguyen, Trang, Mansouri, Amin, Madan, Kanika, Nguyen, Khuong, Ahuja, Kartik, Liu, Dianbo, Bengio, Yoshua
Agents with the ability to comprehend and reason about the dynamics of objects would be expected to exhibit improved robustness and generalization in novel scenarios. However, achieving this capability necessitates not only an effective scene representation but also an understanding of the mechanisms governing interactions among object subsets. Recent studies have made significant progress in representing scenes using object slots. In this work, we introduce Reusable Slotwise Mechanisms, or RSM, a framework that models object dynamics by leveraging communication among slots along with a modular architecture capable of dynamically selecting reusable mechanisms for predicting the future states of each object slot. Crucially, RSM leverages the Central Contextual Information (CCI), enabling selected mechanisms to access the remaining slots through a bottleneck, effectively allowing for modeling of higher order and complex interactions that might require a sparse subset of objects. Experimental results demonstrate the superior performance of RSM compared to state-of-the-art methods across various future prediction and related downstream tasks, including Visual Question Answering and action planning. Furthermore, we showcase RSM's Out-of-Distribution generalization ability to handle scenes in intricate scenarios.
Transformer with a Mixture of Gaussian Keys
Nguyen, Tam, Nguyen, Tan M., Le, Dung, Nguyen, Khuong, Tran, Anh, Baraniuk, Richard G., Ho, Nhat, Osher, Stanley J.
Multi-head attention is a driving force behind state-of-the-art transformers which achieve remarkable performance across a variety of natural language processing (NLP) and computer vision tasks. It has been observed that for many applications, those attention heads learn redundant embedding, and most of them can be removed without degrading the performance of the model. Inspired by this observation, we propose Transformer with a Mixture of Gaussian Keys (Transformer-MGK), a novel transformer architecture that replaces redundant heads in transformers with a mixture of keys at each head. These mixtures of keys follow a Gaussian mixture model and allow each attention head to focus on different parts of the input sequence efficiently. Compared to its conventional transformer counterpart, Transformer-MGK accelerates training and inference, has fewer parameters, and requires less FLOPs to compute while achieving comparable or better accuracy across tasks. Transformer-MGK can also be easily extended to use with linear attentions. We empirically demonstrate the advantage of Transformer-MGK in a range of practical applications including language modeling and tasks that involve very long sequences. On the Wikitext-103 and Long Range Arena benchmark, Transformer-MGKs with 4 heads attain comparable or better performance to the baseline transformers with 8 heads.
Emergence of Different Modes of Tool Use in a Reaching and Dragging Task
Nguyen, Khuong, Choe, Yoonsuck
Tool use is an important milestone in the evolution of intelligence. In this paper, we investigate different modes of tool use that emerge in a reaching and dragging task. In this task, a jointed arm with a gripper must grab a tool (T, I, or L-shaped) and drag an object down to the target location (the bottom of the arena). The simulated environment had real physics such as gravity and friction. We trained a deep-reinforcement learning based controller (with raw visual and proprioceptive input) with minimal reward shaping information to tackle this task. We observed the emergence of a wide range of unexpected behaviors, not directly encoded in the motor primitives or reward functions. Examples include hitting the object to the target location, correcting error of initial contact, throwing the tool toward the object, as well as normal expected behavior such as wide sweep. Also, we further analyzed these behaviors based on the type of tool and the initial position of the target object. Our results show a rich repertoire of behaviors, beyond the basic built-in mechanisms of the deep reinforcement learning method we used.