Nguyen, Khai
Bayesian Density-Density Regression with Application to Cell-Cell Communications
Nguyen, Khai, Ni, Yang, Mueller, Peter
We introduce a scalable framework for regressing multivariate distributions onto multivariate distributions, motivated by the application of inferring cell-cell communication from population-scale single-cell data. The observed data consist of pairs of multivariate distributions for ligands from one cell type and corresponding receptors from another. For each ordered pair $e=(l,r)$ of cell types $(l \neq r)$ and each sample $i = 1, \ldots, n$, we observe a pair of distributions $(F_{ei}, G_{ei})$ of gene expressions for ligands and receptors of cell types $l$ and $r$, respectively. The aim is to set up a regression of receptor distributions $G_{ei}$ given ligand distributions $F_{ei}$. A key challenge is that these distributions reside in distinct spaces of differing dimensions. We formulate the regression of multivariate densities on multivariate densities using a generalized Bayes framework with the sliced Wasserstein distance between fitted and observed distributions. Finally, we use inference under such regressions to define a directed graph for cell-cell communications.
Unbiased Sliced Wasserstein Kernels for High-Quality Audio Captioning
Luong, Manh, Nguyen, Khai, Phung, Dinh, Haffari, Gholamreza, Qu, Lizhen
Teacher-forcing training for audio captioning usually leads to exposure bias due to training and inference mismatch. Prior works propose the contrastive method to deal with caption degeneration. However, the contrastive method ignores the temporal information when measuring similarity across acoustic and linguistic modalities, leading to inferior performance. In this work, we develop the temporal-similarity score by introducing the unbiased sliced Wasserstein RBF (USW-RBF) kernel equipped with rotary positional embedding to account for temporal information across modalities. In contrast to the conventional sliced Wasserstein RBF kernel, we can form an unbiased estimation of USW-RBF kernel via Monte Carlo estimation. Therefore, it is well-suited to stochastic gradient optimization algorithms, and its approximation error decreases at a parametric rate of $\mathcal{O}(L^{-1/2})$ with $L$ Monte Carlo samples. Additionally, we introduce an audio captioning framework based on the unbiased sliced Wasserstein kernel, incorporating stochastic decoding methods to mitigate caption degeneration during the generation process. We conduct extensive quantitative and qualitative experiments on two datasets, AudioCaps and Clotho, to illustrate the capability of generating high-quality audio captions. Experimental results show that our framework is able to increase caption length, lexical diversity, and text-to-audio self-retrieval accuracy.
Lightspeed Geometric Dataset Distance via Sliced Optimal Transport
Nguyen, Khai, Nguyen, Hai, Pham, Tuan, Ho, Nhat
Dataset distances provide a powerful framework for comparing datasets based on their underlying structures, distributions, or content. These measures are essential in applications where understanding the relationships between datasets drives decision-making, such as assessing data quality, detecting distributional shifts, or quantifying biases. They play a critical role in machine learning workflows, enabling tasks like domain adaptation, transfer learning, continual learning, and fairness evaluation. Additionally, dataset distances are valuable in emerging areas such as synthetic data evaluation, 3D shape comparison, and federated learning, where comparing heterogeneous data distributions is fundamental. By capturing meaningful similarities and differences between datasets, these measures facilitate data-driven insights, enhance model robustness, and support novel applications across diverse fields. A common approach to comparing datasets relies on proxies, such as analyzing the learning curves of a predefined model [28, 16] or examining its optimal parameters [1, 22] on a given task. Another strategy involves making strong assumptions about the similarity or co-occurrence of labels between datasets [47]. However, these methods often lack theoretical guarantees, are heavily dependent on the choice of the probe model, and require training the model to completion (e.g., to identify optimal parameters) for each dataset under comparison. To address limitations of previous approaches, model-agnostic approaches are developed.
Summarizing Bayesian Nonparametric Mixture Posterior -- Sliced Optimal Transport Metrics for Gaussian Mixtures
Nguyen, Khai, Mueller, Peter
Existing methods to summarize posterior inference for mixture models focus on identifying a point estimate of the implied random partition for clustering, with density estimation as a secondary goal (Wade and Ghahramani, 2018; Dahl et al., 2022). We propose a novel approach for summarizing posterior inference in nonparametric Bayesian mixture models, prioritizing density estimation of the mixing measure (or mixture) as an inference target. One of the key features is the model-agnostic nature of the approach, which remains valid under arbitrarily complex dependence structures in the underlying sampling model. Using a decision-theoretic framework, our method identifies a point estimate by minimizing posterior expected loss. A loss function is defined as a discrepancy between mixing measures. Estimating the mixing measure implies inference on the mixture density and the random partition. Exploiting the discrete nature of the mixing measure, we use a version of sliced Wasserstein distance. We introduce two specific variants for Gaussian mixtures. The first, mixed sliced Wasserstein, applies generalized geodesic projections on the product of the Euclidean space and the manifold of symmetric positive definite matrices. The second, sliced mixture Wasserstein, leverages the linearity of Gaussian mixture measures for efficient projection.
Borrowing Strength in Distributionally Robust Optimization via Hierarchical Dirichlet Processes
Bariletto, Nicola, Nguyen, Khai, Ho, Nhat
This paper presents a novel optimization framework to address key challenges presented by modern machine learning applications: High dimensionality, distributional uncertainty, and data heterogeneity. Our approach unifies regularized estimation, distributionally robust optimization (DRO), and hierarchical Bayesian modeling in a single data-driven criterion. By employing a hierarchical Dirichlet process (HDP) prior, the method effectively handles multi-source data, achieving regularization, distributional robustness, and borrowing strength across diverse yet related data-generating processes. We demonstrate the method's advantages by establishing theoretical performance guarantees and tractable Monte Carlo approximations based on Dirichlet process (DP) theory. Numerical experiments validate the framework's efficacy in improving and stabilizing both prediction and parameter estimation accuracy, showcasing its potential for application in complex data environments.
Revisiting Deep Audio-Text Retrieval Through the Lens of Transportation
Luong, Manh, Nguyen, Khai, Ho, Nhat, Haf, Reza, Phung, Dinh, Qu, Lizhen
The Learning-to-match (LTM) framework proves to be an effective inverse optimal transport approach for learning the underlying ground metric between two sources of data, facilitating subsequent matching. However, the conventional LTM framework faces scalability challenges, necessitating the use of the entire dataset each time the parameters of the ground metric are updated. In adapting LTM to the deep learning context, we introduce the mini-batch Learning-to-match (m-LTM) framework for audio-text retrieval problems. Moreover, to cope with misaligned training data in practice, we propose a variant using partial optimal transport to mitigate the harm of misaligned data pairs in training data. We conduct extensive experiments on audio-text matching problems using three datasets: AudioCaps, Clotho, and ESC-50. Results demonstrate that our proposed method is capable of learning rich and expressive joint embedding space, which achieves SOTA performance. Beyond this, the proposed m-LTM framework is able to close the modality gap across audio and text embedding, which surpasses both triplet and contrastive loss in the zero-shot sound event detection task on the ESC-50 dataset. Notably, our strategy of employing partial optimal transport with m-LTM demonstrates greater noise tolerance than contrastive loss, especially under varying noise ratios in training data on the AudioCaps dataset.
Marginal Fairness Sliced Wasserstein Barycenter
Nguyen, Khai, Nguyen, Hai, Ho, Nhat
The sliced Wasserstein barycenter (SWB) is a widely acknowledged method for efficiently generalizing the averaging operation within probability measure spaces. However, achieving marginal fairness SWB, ensuring approximately equal distances from the barycenter to marginals, remains unexplored. The uniform weighted SWB is not necessarily the optimal choice to obtain the desired marginal fairness barycenter due to the heterogeneous structure of marginals and the non-optimality of the optimization. As the first attempt to tackle the problem, we define the marginal fairness sliced Wasserstein barycenter (MFSWB) as a constrained SWB problem. Due to the computational disadvantages of the formal definition, we propose two hyperparameter-free and computationally tractable surrogate MFSWB problems that implicitly minimize the distances to marginals and encourage marginal fairness at the same time. To further improve the efficiency, we perform slicing distribution selection and obtain the third surrogate definition by introducing a new slicing distribution that focuses more on marginally unfair projecting directions. We discuss the relationship of the three proposed problems and their relationship to sliced multi-marginal Wasserstein distance. Finally, we conduct experiments on finding 3D point-clouds averaging, color harmonization, and training of sliced Wasserstein autoencoder with class-fairness representation to show the favorable performance of the proposed surrogate MFSWB problems.
Hierarchical Hybrid Sliced Wasserstein: A Scalable Metric for Heterogeneous Joint Distributions
Nguyen, Khai, Ho, Nhat
Sliced Wasserstein (SW) and Generalized Sliced Wasserstein (GSW) have been widely used in applications due to their computational and statistical scalability. However, the SW and the GSW are only defined between distributions supported on a homogeneous domain. This limitation prevents their usage in applications with heterogeneous joint distributions with marginal distributions supported on multiple different domains. Using SW and GSW directly on the joint domains cannot make a meaningful comparison since their homogeneous slicing operator i.e., Radon Transform (RT) and Generalized Radon Transform (GRT) are not expressive enough to capture the structure of the joint supports set. To address the issue, we propose two new slicing operators i.e., Partial Generalized Radon Transform (PGRT) and Hierarchical Hybrid Radon Transform (HHRT). In greater detail, PGRT is the generalization of Partial Radon Transform (PRT), which transforms a subset of function arguments non-linearly while HHRT is the composition of PRT and multiple domain-specific PGRT on marginal domain arguments. By using HHRT, we extend the SW into Hierarchical Hybrid Sliced Wasserstein (H2SW) distance which is designed specifically for comparing heterogeneous joint distributions. We then discuss the topological, statistical, and computational properties of H2SW. Finally, we demonstrate the favorable performance of H2SW in 3D mesh deformation, deep 3D mesh autoencoders, and datasets comparison.
Code Generation for Conic Model-Predictive Control on Microcontrollers with TinyMPC
Schoedel, Sam, Nguyen, Khai, Nedumaran, Elakhya, Plancher, Brian, Manchester, Zachary
Conic constraints appear in many important control applications like legged locomotion, robotic manipulation, and autonomous rocket landing. However, current solvers for conic optimization problems have relatively heavy computational demands in terms of both floating-point operations and memory footprint, making them impractical for use on small embedded devices. We extend TinyMPC, an open-source, high-speed solver targeting low-power embedded control applications, to handle second-order cone constraints. We also present code-generation software to enable deployment of TinyMPC on a variety of microcontrollers. We benchmark our generated code against state-of-the-art embedded QP and SOCP solvers, demonstrating a two-order-of-magnitude speed increase over ECOS while consuming less memory. Finally, we demonstrate TinyMPC's efficacy on the Crazyflie, a lightweight, resource-constrained quadrotor with fast dynamics. TinyMPC and its code-generation tools are publicly available at https://tinympc.org.
Integrating Efficient Optimal Transport and Functional Maps For Unsupervised Shape Correspondence Learning
Le, Tung, Nguyen, Khai, Sun, Shanlin, Ho, Nhat, Xie, Xiaohui
In the realm of computer vision and graphics, accurately establishing correspondences between geometric 3D shapes is pivotal for applications like object tracking, registration, texture transfer, and statistical shape analysis. Moving beyond traditional hand-crafted and data-driven feature learning methods, we incorporate spectral methods with deep learning, focusing on functional maps (FMs) and optimal transport (OT). Traditional OT-based approaches, often reliant on entropy regularization OT in learning-based framework, face computational challenges due to their quadratic cost. Our key contribution is to employ the sliced Wasserstein distance (SWD) for OT, which is a valid fast optimal transport metric in an unsupervised shape matching framework. This unsupervised framework integrates functional map regularizers with a novel OT-based loss derived from SWD, enhancing feature alignment between shapes treated as discrete probability measures. We also introduce an adaptive refinement process utilizing entropy regularized OT, further refining feature alignments for accurate point-to-point correspondences. Our method demonstrates superior performance in non-rigid shape matching, including near-isometric and non-isometric scenarios, and excels in downstream tasks like segmentation transfer. The empirical results on diverse datasets highlight our framework's effectiveness and generalization capabilities, setting new standards in non-rigid shape matching with efficient OT metrics and an adaptive refinement module.