Goto

Collaborating Authors

 Nguyen, Duc Thien


Model-Free Adversarial Purification via Coarse-To-Fine Tensor Network Representation

arXiv.org Artificial Intelligence

Deep neural networks are known to be vulnerable to well-designed adversarial attacks. Although numerous defense strategies have been proposed, many are tailored to the specific attacks or tasks and often fail to generalize across diverse scenarios. In this paper, we propose Tensor Network Purification (TNP), a novel model-free adversarial purification method by a specially designed tensor network decomposition algorithm. TNP depends neither on the pre-trained generative model nor the specific dataset, resulting in strong robustness across diverse adversarial scenarios. To this end, the key challenge lies in relaxing Gaussian-noise assumptions of classical decompositions and accommodating the unknown distribution of adversarial perturbations. Unlike the low-rank representation of classical decompositions, TNP aims to reconstruct the unobserved clean examples from an adversarial example. Specifically, TNP leverages progressive downsampling and introduces a novel adversarial optimization objective to address the challenge of minimizing reconstruction error but without inadvertently restoring adversarial perturbations. Extensive experiments conducted on CIFAR-10, CIFAR-100, and ImageNet demonstrate that our method generalizes effectively across various norm threats, attack types, and tasks, providing a versatile and promising adversarial purification technique.


Multilinear Kernel Regression and Imputation via Manifold Learning

arXiv.org Artificial Intelligence

This paper introduces a novel nonparametric framework for data imputation, coined multilinear kernel regression and imputation via the manifold assumption (MultiL-KRIM). Motivated by manifold learning, MultiL-KRIM models data features as a point cloud located in or close to a user-unknown smooth manifold embedded in a reproducing kernel Hilbert space. Unlike typical manifold-learning routes, which seek low-dimensional patterns via regularizers based on graph-Laplacian matrices, MultiL-KRIM builds instead on the intuitive concept of tangent spaces to manifolds and incorporates collaboration among point-cloud neighbors (regressors) directly into the data-modeling term of the loss function. Multiple kernel functions are allowed to offer robustness and rich approximation properties, while multiple matrix factors offer low-rank modeling, integrate dimensionality reduction, and streamline computations with no need of training data. Two important application domains showcase the functionality of MultiL-KRIM: time-varying-graph-signal (TVGS) recovery, and reconstruction of highly accelerated dynamic-magnetic-resonance-imaging (dMRI) data. Extensive numerical tests on real and synthetic data demonstrate MultiL-KRIM's remarkable speedups over its predecessors, and outperformance over prevalent "shallow" data-imputation techniques, with a more intuitive and explainable pipeline than deep-image-prior methods.


Fast Temporal Wavelet Graph Neural Networks

arXiv.org Artificial Intelligence

Spatio-temporal signals forecasting plays an important role in numerous domains, especially in neuroscience and transportation. The task is challenging due to the highly intricate spatial structure, as well as the non-linear temporal dynamics of the network. To facilitate reliable and timely forecast for the human brain and traffic networks, we propose the Fast Temporal Wavelet Graph Neural Networks (FTWGNN) that is both time- and memory-efficient for learning tasks on timeseries data with the underlying graph structure, thanks to the theories of multiresolution analysis and wavelet theory on discrete spaces. We employ Multiresolution Matrix Factorization (MMF) (Kondor et al., 2014) to factorize the highly dense graph structure and compute the corresponding sparse wavelet basis that allows us to construct fast wavelet convolution as the backbone of our novel architecture. Experimental results on real-world PEMS-BAY, METR-LA traffic datasets and AJILE12 ECoG dataset show that FTWGNN is competitive with the state-of-the-arts while maintaining a low computational footprint. Our PyTorch implementation is publicly available at https://github.com/HySonLab/TWGNN


Multi-Linear Kernel Regression and Imputation in Data Manifolds

arXiv.org Artificial Intelligence

YNAMIC magnetic resonance imaging (dMRI) is a popular non-invasive imaging modality for observing regularizers which are widely used in manifoldlearning body organ movement, with rich potential in cardiac and approaches [16]-[18]. MultiL-KRIM adopts instead a neurological diagnosis [1]. DMRI stands out as an application "collaborative-filtering" modeling approach to identify "optimal" domain where regression grapples with all of the and manifold-cognizant combinations of the observed archetypal data-analytic bottlenecks: large dimensionality due data features for regression and imputation. MultiL-KRIM to the image data, dynamic data patterns due to dMRI's time needs no training data to operate, builds a nonparametric component, missing data due to under-sampling, and strong regression estimate to reduce the dependence of its modeling but unknown spatio-temporal correlations since, often, dMRI assumptions on the probability distribution of the data [37], monitors structured movement; e.g., a beating heart [2].


Probabilistic Inference for Learning from Untrusted Sources

arXiv.org Artificial Intelligence

Federated learning brings potential benefits of faster learning, better solutions, and a greater propensity to transfer when heterogeneous data from different parties increases diversity. However, because federated learning tasks tend to be large and complex, and training times non-negligible, it is important for the aggregation algorithm to be robust to non-IID data and corrupted parties. This robustness relies on the ability to identify, and appropriately weight, incompatible parties. Recent work assumes that a \textit{reference dataset} is available through which to perform the identification. We consider settings where no such reference dataset is available; rather, the quality and suitability of the parties needs to be \textit{inferred}. We do so by bringing ideas from crowdsourced predictions and collaborative filtering, where one must infer an unknown ground truth given proposals from participants with unknown quality. We propose novel federated learning aggregation algorithms based on Bayesian inference that adapt to the quality of the parties. Empirically, we show that the algorithms outperform standard and robust aggregation in federated learning on both synthetic and real data.


Variational Bayesian Inference for Crowdsourcing Predictions

arXiv.org Artificial Intelligence

Crowdsourcing has emerged as an effective means for performing a number of machine learning tasks such as annotation and labelling of images and other data sets. In most early settings of crowdsourcing, the task involved classification, that is assigning one of a discrete set of labels to each task. Recently, however, more complex tasks have been attempted including asking crowdsource workers to assign continuous labels, or predictions. In essence, this involves the use of crowdsourcing for function estimation. We are motivated by this problem to drive applications such as collaborative prediction, that is, harnessing the wisdom of the crowd to predict quantities more accurately. To do so, we propose a Bayesian approach aimed specifically at alleviating overfitting, a typical impediment to accurate prediction models in practice. In particular, we develop a variational Bayesian technique for two different worker noise models - one that assumes workers' noises are independent and the other that assumes workers' noises have a latent low-rank structure. Our evaluations on synthetic and real-world datasets demonstrate that these Bayesian approaches perform significantly better than existing non-Bayesian approaches and are thus potentially useful for this class of crowdsourcing problems.


Distributed Gibbs: A Linear-Space Sampling-Based DCOP Algorithm

Journal of Artificial Intelligence Research

Researchers have used distributed constraint optimization problems (DCOPs) to model various multi-agent coordination and resource allocation problems. Very recently, Ottens et al. proposed a promising new approach to solve DCOPs that is based on confidence bounds via their Distributed UCT (DUCT) sampling-based algorithm. Unfortunately, its memory requirement per agent is exponential in the number of agents in the problem, which prohibits it from scaling up to large problems. Thus, in this article, we introduce two new sampling-based DCOP algorithms called Sequential Distributed Gibbs (SD-Gibbs) and Parallel Distributed Gibbs (PD-Gibbs). Both algorithms have memory requirements per agent that is linear in the number of agents in the problem. Our empirical results show that our algorithms can find solutions that are better than DUCT, run faster than DUCT, and solve some large problems that DUCT failed to solve due to memory limitations.


Credit Assignment For Collective Multiagent RL With Global Rewards

Neural Information Processing Systems

Scaling decision theoretic planning to large multiagent systems is challenging due to uncertainty and partial observability in the environment. We focus on a multiagent planning model subclass, relevant to urban settings, where agent interactions are dependent on their ``collective influence'' on each other, rather than their identities. Unlike previous work, we address a general setting where system reward is not decomposable among agents. We develop collective actor-critic RL approaches for this setting, and address the problem of multiagent credit assignment, and computing low variance policy gradient estimates that result in faster convergence to high quality solutions. We also develop difference rewards based credit assignment methods for the collective setting. Empirically our new approaches provide significantly better solutions than previous methods in the presence of global rewards on two real world problems modeling taxi fleet optimization and multiagent patrolling, and a synthetic grid navigation domain.


Credit Assignment For Collective Multiagent RL With Global Rewards

Neural Information Processing Systems

Scaling decision theoretic planning to large multiagent systems is challenging due to uncertainty and partial observability in the environment. We focus on a multiagent planning model subclass, relevant to urban settings, where agent interactions are dependent on their ``collective influence'' on each other, rather than their identities. Unlike previous work, we address a general setting where system reward is not decomposable among agents. We develop collective actor-critic RL approaches for this setting, and address the problem of multiagent credit assignment, and computing low variance policy gradient estimates that result in faster convergence to high quality solutions. We also develop difference rewards based credit assignment methods for the collective setting. Empirically our new approaches provide significantly better solutions than previous methods in the presence of global rewards on two real world problems modeling taxi fleet optimization and multiagent patrolling, and a synthetic grid navigation domain.


Policy Gradient With Value Function Approximation For Collective Multiagent Planning

Neural Information Processing Systems

Decentralized (PO)MDPs provide an expressive framework for sequential decision making in a multiagent system. Given their computational complexity, recent research has focused on tractable yet practical subclasses of Dec-POMDPs. We address such a subclass called CDec-POMDP where the collective behavior of a population of agents affects the joint-reward and environment dynamics. Our main contribution is an actor-critic (AC) reinforcement learning method for optimizing CDec-POMDP policies. Vanilla AC has slow convergence for larger problems. To address this, we show how a particular decomposition of the approximate action-value function over agents leads to effective updates, and also derive a new way to train the critic based on local reward signals. Comparisons on a synthetic benchmark and a real world taxi fleet optimization problem show that our new AC approach provides better quality solutions than previous best approaches.