Goto

Collaborating Authors

 Nguyen, Dat Thanh


Dissecting vocabulary biases datasets through statistical testing and automated data augmentation for artifact mitigation in Natural Language Inference

arXiv.org Artificial Intelligence

In recent years, the availability of large-scale annotated datasets, such as the Stanford Natural Language Inference and the Multi-Genre Natural Language Inference, coupled with the advent of pre-trained language models, has significantly contributed to the development of the natural language inference domain. However, these crowdsourced annotated datasets often contain biases or dataset artifacts, leading to overestimated model performance and poor generalization. In this work, we focus on investigating dataset artifacts and developing strategies to address these issues. Through the utilization of a novel statistical testing procedure, we discover a significant association between vocabulary distribution and text entailment classes, emphasizing vocabulary as a notable source of biases. To mitigate these issues, we propose several automatic data augmentation strategies spanning character to word levels. By fine-tuning the ELECTRA pre-trained language model, we compare the performance of boosted models with augmented data against their baseline counterparts. The experiments demonstrate that the proposed approaches effectively enhance model accuracy and reduce biases by up to 0.66% and 1.14%, respectively.


Deep probabilistic model for lossless scalable point cloud attribute compression

arXiv.org Artificial Intelligence

In recent years, several point cloud geometry compression methods that utilize advanced deep learning techniques have been proposed, but there are limited works on attribute compression, especially lossless compression. In this work, we build an end-to-end multiscale point cloud attribute coding method (MNeT) that progressively projects the attributes onto multiscale latent spaces. The multiscale architecture provides an accurate context for the attribute probability modeling and thus minimizes the coding bitrate with a single network prediction. Besides, our method allows scalable coding that lower quality versions can be easily extracted from the losslessly compressed bitstream. We validate our method on a set of point clouds from MVUB and MPEG and show that our method outperforms recently proposed methods and on par with the latest G-PCC version 14. Besides, our coding time is substantially faster than G-PCC.