Ngo, Dat
An Inception-Residual-Based Architecture with Multi-Objective Loss for Detecting Respiratory Anomalies
Ngo, Dat, Pham, Lam, Phan, Huy, Tran, Minh, Jarchi, Delaram, Kolozali, Sefki
This paper presents a deep learning system applied for detecting anomalies from respiratory sound recordings. Initially, our system begins with audio feature extraction using Gammatone and Continuous Wavelet transformation. This step aims to transform the respiratory sound input into a two-dimensional spectrogram where both spectral and temporal features are presented. Then, our proposed system integrates Inception-residual-based backbone models combined with multi-head attention and multi-objective loss to classify respiratory anomalies. Instead of applying a simple concatenation approach by combining results from various spectrograms, we propose a Linear combination, which has the ability to regulate equally the contribution of each individual spectrogram throughout the training process. To evaluate the performance, we conducted experiments over the benchmark dataset of SPRSound (The Open-Source SJTU Paediatric Respiratory Sound) proposed by the IEEE BioCAS 2022 challenge. As regards the Score computed by an average between the average score and harmonic score, our proposed system gained significant improvements of 9.7%, 15.8%, 17.8%, and 16.1% in Task 1-1, Task 1-2, Task 2-1, and Task 2-2, respectively, compared to the challenge baseline system. Notably, we achieved the Top-1 performance in Task 2-1 and Task 2-2 with the highest Score of 74.5% and 53.9%, respectively.
Low-complexity deep learning frameworks for acoustic scene classification using teacher-student scheme and multiple spectrograms
Pham, Lam, Ngo, Dat, Le, Cam, Jalali, Anahid, Schindler, Alexander
In this technical report, a low-complexity deep learning system for acoustic scene classification (ASC) is presented. The proposed system comprises two main phases: (Phase I) Training a teacher network; and (Phase II) training a student network using distilled knowledge from the teacher. In the first phase, the teacher, which presents a large footprint model, is trained. After training the teacher, the embeddings, which are the feature map of the second last layer of the teacher, are extracted. In the second phase, the student network, which presents a low complexity model, is trained with the embeddings extracted from the teacher. Our experiments conducted on DCASE 2023 Task 1 Development dataset have fulfilled the requirement of low-complexity and achieved the best classification accuracy of 57.4%, improving DCASE baseline by 14.5%.
A Light-weight Deep Learning Model for Remote Sensing Image Classification
Pham, Lam, Le, Cam, Ngo, Dat, Nguyen, Anh, Lampert, Jasmin, Schindler, Alexander, McLoughlin, Ian
In this paper, we present a high-performance and light-weight deep learning model for Remote Sensing Image Classification (RSIC), the task of identifying the aerial scene of a remote sensing image. To this end, we first valuate various benchmark convolutional neural network (CNN) architectures: MobileNet V1/V2, ResNet 50/151V2, InceptionV3/InceptionResNetV2, EfficientNet B0/B7, DenseNet 121/201, ConNeXt Tiny/Large. Then, the best performing models are selected to train a compact model in a teacher-student arrangement. The knowledge distillation from the teacher aims to achieve high performance with significantly reduced complexity. By conducting extensive experiments on the NWPU-RESISC45 benchmark, our proposed teacher-student models outperforms the state-of-the-art systems, and has potential to be applied on a wide rage of edge devices.