Goto

Collaborating Authors

 Ng, Ignavier


Analytic DAG Constraints for Differentiable DAG Learning

arXiv.org Artificial Intelligence

Recovering the underlying Directed Acyclic Graph (DAG) structures from observational data presents a formidable challenge, partly due to the combinatorial nature of the DAG-constrained optimization problem. Recently, researchers have identified gradient vanishing as one of the primary obstacles in differentiable DAG learning and have proposed several DAG constraints to mitigate this issue. By developing the necessary theory to establish a connection between analytic functions and DAG constraints, we demonstrate that analytic functions from the set $\{f(x) = c_0 + \sum_{i=1}^{\infty}c_ix^i | \forall i > 0, c_i > 0; r = \lim_{i\rightarrow \infty}c_{i}/c_{i+1} > 0\}$ can be employed to formulate effective DAG constraints. Furthermore, we establish that this set of functions is closed under several functional operators, including differentiation, summation, and multiplication. Consequently, these operators can be leveraged to create novel DAG constraints based on existing ones. Using these properties, we design a series of DAG constraints and develop an efficient algorithm to evaluate them. Experiments in various settings demonstrate that our DAG constraints outperform previous state-of-the-art comparators. Our implementation is available at https://github.com/zzhang1987/AnalyticDAGLearning.


When Selection Meets Intervention: Additional Complexities in Causal Discovery

arXiv.org Artificial Intelligence

We address the common yet often-overlooked selection bias in interventional studies, where subjects are selectively enrolled into experiments. For instance, participants in a drug trial are usually patients of the relevant disease; A/B tests on mobile applications target existing users only, and gene perturbation studies typically focus on specific cell types, such as cancer cells. Ignoring this bias leads to incorrect causal discovery results. Even when recognized, the existing paradigm for interventional causal discovery still fails to address it. This is because subtle differences in when and where interventions happen can lead to significantly different statistical patterns. We capture this dynamic by introducing a graphical model that explicitly accounts for both the observed world (where interventions are applied) and the counterfactual world (where selection occurs while interventions have not been applied). We characterize the Markov property of the model, and propose a provably sound algorithm to identify causal relations as well as selection mechanisms up to the equivalence class, from data with soft interventions and unknown targets. Through synthetic and real-world experiments, we demonstrate that our algorithm effectively identifies true causal relations despite the presence of selection bias.


Synergy Between Sufficient Changes and Sparse Mixing Procedure for Disentangled Representation Learning

arXiv.org Machine Learning

Disentangled representation learning aims to uncover latent variables underlying the observed data, and generally speaking, rather strong assumptions are needed to ensure identifiability. Some approaches rely on sufficient changes on the distribution of latent variables indicated by auxiliary variables such as domain indices, but acquiring enough domains is often challenging. Alternative approaches exploit structural sparsity assumptions on the mixing procedure, but such constraints are usually (partially) violated in practice. Interestingly, we find that these two seemingly unrelated assumptions can actually complement each other to achieve identifiability. Specifically, when conditioned on auxiliary variables, the sparse mixing procedure assumption provides structural constraints on the mapping from estimated to true latent variables and hence compensates for potentially insufficient distribution changes. Building on this insight, we propose an identifiability theory with less restrictive constraints regarding distribution changes and the sparse mixing procedure, enhancing applicability to real-world scenarios. Additionally, we develop an estimation framework incorporating a domain encoding network and a sparse mixing constraint and provide two implementations based on variational autoencoders and generative adversarial networks, respectively. Experiment results on synthetic and real-world datasets support our theoretical results.


Permutation-Based Rank Test in the Presence of Discretization and Application in Causal Discovery with Mixed Data

arXiv.org Artificial Intelligence

Recent advances have shown that statistical tests for the rank of cross-covariance matrices play an important role in causal discovery. These rank tests include partial correlation tests as special cases and provide further graphical information about latent variables. Existing rank tests typically assume that all the continuous variables can be perfectly measured, and yet, in practice many variables can only be measured after discretization. For example, in psychometric studies, the continuous level of certain personality dimensions of a person can only be measured after being discretized into order-preserving options such as disagree, neutral, and agree. Motivated by this, we propose Mixed data Permutation-based Rank Test (MPRT), which properly controls the statistical errors even when some or all variables are discretized. Theoretically, we establish the exchangeability and estimate the asymptotic null distribution by permutations; as a consequence, MPRT can effectively control the Type I error in the presence of discretization while previous methods cannot. Empirically, our method is validated by extensive experiments on synthetic data and real-world data to demonstrate its effectiveness as well as applicability in causal discovery.


Identification of Nonparametric Dynamic Causal Structure and Latent Process in Climate System

arXiv.org Artificial Intelligence

The study of learning causal structure with latent variables has advanced the understanding of the world by uncovering causal relationships and latent factors, e.g., Causal Representation Learning (CRL). However, in real-world scenarios, such as those in climate systems, causal relationships are often nonparametric, dynamic, and exist among both observed variables and latent variables. These challenges motivate us to consider a general setting in which causal relations are nonparametric and unrestricted in their occurrence, which is unconventional to current methods. To solve this problem, with the aid of 3-measurement in temporal structure, we theoretically show that both latent variables and processes can be identified up to minor indeterminacy under mild assumptions. Moreover, we tackle the general nonlinear Causal Discovery (CD) from observations, e.g., temperature, as a specific task of learning independent representation, through the principle of functional equivalence. Based on these insights, we develop an estimation approach simultaneously recovering both the observed causal structure and latent causal process in a nontrivial manner. Simulation studies validate the theoretical foundations and demonstrate the effectiveness of the proposed methodology. In the experiments involving climate data, this approach offers a powerful and in-depth understanding of the climate system.


Differentiable Causal Discovery For Latent Hierarchical Causal Models

arXiv.org Artificial Intelligence

Discovering causal structures with latent variables from observational data is a fundamental challenge in causal discovery. Existing methods often rely on constraint-based, iterative discrete searches, limiting their scalability to large numbers of variables. Moreover, these methods frequently assume linearity or invertibility, restricting their applicability to real-world scenarios. We present new theoretical results on the identifiability of nonlinear latent hierarchical causal models, relaxing previous assumptions in literature about the deterministic nature of latent variables and exogenous noise. Building on these insights, we develop a novel differentiable causal discovery algorithm that efficiently estimates the structure of such models. To the best of our knowledge, this is the first work to propose a differentiable causal discovery method for nonlinear latent hierarchical models. Our approach outperforms existing methods in both accuracy and scalability. We demonstrate its practical utility by learning interpretable hierarchical latent structures from high-dimensional image data and demonstrate its effectiveness on downstream tasks.


Revisiting Differentiable Structure Learning: Inconsistency of $\ell_1$ Penalty and Beyond

arXiv.org Machine Learning

Recent advances in differentiable structure learning have framed the combinatorial problem of learning directed acyclic graphs as a continuous optimization problem. Various aspects, including data standardization, have been studied to identify factors that influence the empirical performance of these methods. In this work, we investigate critical limitations in differentiable structure learning methods, focusing on settings where the true structure can be identified up to Markov equivalence classes, particularly in the linear Gaussian case. While Ng et al. (2024) highlighted potential non-convexity issues in this setting, we demonstrate and explain why the use of $\ell_1$-penalized likelihood in such cases is fundamentally inconsistent, even if the global optimum of the optimization problem can be found. To resolve this limitation, we develop a hybrid differentiable structure learning method based on $\ell_0$-penalized likelihood with hard acyclicity constraint, where the $\ell_0$ penalty can be approximated by different techniques including Gumbel-Softmax. Specifically, we first estimate the underlying moral graph, and use it to restrict the search space of the optimization problem, which helps alleviate the non-convexity issue. Experimental results show that the proposed method enhances empirical performance both before and after data standardization, providing a more reliable path for future advancements in differentiable structure learning, especially for learning Markov equivalence classes.


A Skewness-Based Criterion for Addressing Heteroscedastic Noise in Causal Discovery

arXiv.org Machine Learning

Real-world data often violates the equal-variance assumption (homoscedasticity), making it essential to account for heteroscedastic noise in causal discovery. In this work, we explore heteroscedastic symmetric noise models (HSNMs), where the effect $Y$ is modeled as $Y = f(X) + \sigma(X)N$, with $X$ as the cause and $N$ as independent noise following a symmetric distribution. We introduce a novel criterion for identifying HSNMs based on the skewness of the score (i.e., the gradient of the log density) of the data distribution. This criterion establishes a computationally tractable measurement that is zero in the causal direction but nonzero in the anticausal direction, enabling the causal direction discovery. We extend this skewness-based criterion to the multivariate setting and propose SkewScore, an algorithm that handles heteroscedastic noise without requiring the extraction of exogenous noise. We also conduct a case study on the robustness of SkewScore in a bivariate model with a latent confounder, providing theoretical insights into its performance. Empirical studies further validate the effectiveness of the proposed method.


Local Causal Discovery with Linear non-Gaussian Cyclic Models

arXiv.org Artificial Intelligence

Local causal discovery is of great practical significance, as there are often situations where the discovery of the global causal structure is unnecessary, and the interest lies solely on a single target variable. Most existing local methods utilize conditional independence relations, providing only a partially directed graph, and assume acyclicity for the ground-truth structure, even though real-world scenarios often involve cycles like feedback mechanisms. In this work, we present a general, unified local causal discovery method with linear non-Gaussian models, whether they are cyclic or acyclic. We extend the application of independent component analysis from the global context to independent subspace analysis, enabling the exact identification of the equivalent local directed structures and causal strengths from the Markov blanket of the target variable. We also propose an alternative regression-based method in the particular acyclic scenarios. Our identifiability results are empirically validated using both synthetic and real-world datasets.


Gene Regulatory Network Inference in the Presence of Dropouts: a Causal View

arXiv.org Artificial Intelligence

Gene regulatory network inference (GRNI) is a challenging problem, particularly owing to the presence of zeros in single-cell RNA sequencing data: some are biological zeros representing no gene expression, while some others are technical zeros arising from the sequencing procedure (aka dropouts), which may bias GRNI by distorting the joint distribution of the measured gene expressions. Existing approaches typically handle dropout error via imputation, which may introduce spurious relations as the true joint distribution is generally unidentifiable. To tackle this issue, we introduce a causal graphical model to characterize the dropout mechanism, namely, Causal Dropout Model. We provide a simple yet effective theoretical result: interestingly, the conditional independence (CI) relations in the data with dropouts, after deleting the samples with zero values (regardless if technical or not) for the conditioned variables, are asymptotically identical to the CI relations in the original data without dropouts. This particular test-wise deletion procedure, in which we perform CI tests on the samples without zeros for the conditioned variables, can be seamlessly integrated with existing structure learning approaches including constraint-based and greedy score-based methods, thus giving rise to a principled framework for GRNI in the presence of dropouts. We further show that the causal dropout model can be validated from data, and many existing statistical models to handle dropouts fit into our model as specific parametric instances. Empirical evaluation on synthetic, curated, and real-world experimental transcriptomic data comprehensively demonstrate the efficacy of our method.