Goto

Collaborating Authors

 Neville, Jennifer


Group Preference Alignment: Customized LLM Response Generation from In-Situ Conversations

arXiv.org Artificial Intelligence

LLMs often fail to meet the specialized needs of distinct user groups due to their one-size-fits-all training paradigm \cite{lucy-etal-2024-one} and there is limited research on what personalization aspects each group expect. To address these limitations, we propose a group-aware personalization framework, Group Preference Alignment (GPA), that identifies context-specific variations in conversational preferences across user groups and then steers LLMs to address those preferences. Our approach consists of two steps: (1) Group-Aware Preference Extraction, where maximally divergent user-group preferences are extracted from real-world conversation logs and distilled into interpretable rubrics, and (2) Tailored Response Generation, which leverages these rubrics through two methods: a) Context-Tuned Inference (GAP-CT), that dynamically adjusts responses via context-dependent prompt instructions, and b) Rubric-Finetuning Inference (GPA-FT), which uses the rubrics to generate contrastive synthetic data for personalization of group-specific models via alignment. Experiments demonstrate that our framework significantly improves alignment of the output with respect to user preferences and outperforms baseline methods, while maintaining robust performance on standard benchmarks.


GenTool: Enhancing Tool Generalization in Language Models through Zero-to-One and Weak-to-Strong Simulation

arXiv.org Artificial Intelligence

Large Language Models (LLMs) can enhance their capabilities as AI assistants by integrating external tools, allowing them to access a wider range of information. While recent LLMs are typically fine-tuned with tool usage examples during supervised fine-tuning (SFT), questions remain about their ability to develop robust tool-usage skills and can effectively generalize to unseen queries and tools. In this work, we present GenTool, a novel training framework that prepares LLMs for diverse generalization challenges in tool utilization. Our approach addresses two fundamental dimensions critical for real-world applications: Zero-to-One Generalization, enabling the model to address queries initially lacking a suitable tool by adopting and utilizing one when it becomes available, and Weak-to-Strong Generalization, allowing models to leverage enhanced versions of existing tools to solve queries. To achieve this, we develop synthetic training data simulating these two dimensions of tool usage and introduce a two-stage fine-tuning approach: optimizing tool ranking, then refining tool selection. Through extensive experiments across four generalization scenarios, we demonstrate that our method significantly enhances the tool-usage capabilities of LLMs ranging from 1B to 8B parameters, achieving performance that surpasses GPT-4o. Furthermore, our analysis also provides valuable insights into the challenges LLMs encounter in tool generalization.


Improving Node Representation by Boosting Target-Aware Contrastive Loss

arXiv.org Artificial Intelligence

Graphs model complex relationships between entities, with nodes and edges capturing intricate connections. Node representation learning involves transforming nodes into low-dimensional embeddings. These embeddings are typically used as features for downstream tasks. Therefore, their quality has a significant impact on task performance. Existing approaches for node representation learning span (semi-)supervised, unsupervised, and self-supervised paradigms. In graph domains, (semi-)supervised learning often only optimizes models based on class labels, neglecting other abundant graph signals, which limits generalization. While self-supervised or unsupervised learning produces representations that better capture underlying graph signals, the usefulness of these captured signals for downstream target tasks can vary. To bridge this gap, we introduce Target-Aware Contrastive Learning (Target-aware CL) which aims to enhance target task performance by maximizing the mutual information between the target task and node representations with a self-supervised learning process. This is achieved through a sampling function, XGBoost Sampler (XGSampler), to sample proper positive examples for the proposed Target-Aware Contrastive Loss (XTCL). By minimizing XTCL, Target-aware CL increases the mutual information between the target task and node representations, such that model generalization is improved. Additionally, XGSampler enhances the interpretability of each signal by showing the weights for sampling the proper positive examples. We show experimentally that XTCL significantly improves the performance on two target tasks: node classification and link prediction tasks, compared to state-of-the-art models.


Rethinking Node Representation Interpretation through Relation Coherence

arXiv.org Artificial Intelligence

Understanding node representations in graph-based models is crucial for uncovering biases ,diagnosing errors, and building trust in model decisions. However, previous work on explainable AI for node representations has primarily emphasized explanations (reasons for model predictions) rather than interpretations (mapping representations to understandable concepts). Furthermore, the limited research that focuses on interpretation lacks validation, and thus the reliability of such methods is unclear. We address this gap by proposing a novel interpretation method-Node Coherence Rate for Representation Interpretation (NCI)-which quantifies how well different node relations are captured in node representations. We also propose a novel method (IME) to evaluate the accuracy of different interpretation methods. Our experimental results demonstrate that NCI reduces the error of the previous best approach by an average of 39%. We then apply NCI to derive insights about the node representations produced by several graph-based methods and assess their quality in unsupervised settings.


Symbolic Prompt Program Search: A Structure-Aware Approach to Efficient Compile-Time Prompt Optimization

arXiv.org Artificial Intelligence

In many modern LLM applications, such as retrieval augmented generation, prompts have become programs themselves. In these settings, prompt programs are repeatedly called with different user queries or data instances. A big practical challenge is optimizing such prompt programs. Recent work has mostly focused on either simple prompt programs or assumed that the general structure of a prompt program is fixed. We introduce SAMMO, a framework to perform symbolic prompt program search for compile-time optimizations of prompt programs. SAMMO represents prompt programs on a symbolic level which allows for a rich set of transformations that can be searched over during optimization. We show that SAMMO generalizes previous methods and improves the performance of complex prompts on (1) instruction tuning, (2) RAG pipeline tuning, and (3) prompt compression, across several different LLMs. We make all code available open-source at https://github.com/microsoft/sammo .


Interpretable User Satisfaction Estimation for Conversational Systems with Large Language Models

arXiv.org Artificial Intelligence

Accurate and interpretable user satisfaction estimation (USE) is critical for understanding, evaluating, and continuously improving conversational systems. Users express their satisfaction or dissatisfaction with diverse conversational patterns in both general-purpose (ChatGPT and Bing Copilot) and task-oriented (customer service chatbot) conversational systems. Existing approaches based on featurized ML models or text embeddings fall short in extracting generalizable patterns and are hard to interpret. In this work, we show that LLMs can extract interpretable signals of user satisfaction from their natural language utterances more effectively than embedding-based approaches. Moreover, an LLM can be tailored for USE via an iterative prompting framework using supervision from labeled examples. The resulting method, Supervised Prompting for User satisfaction Rubrics (SPUR), not only has higher accuracy but is more interpretable as it scores user satisfaction via learned rubrics with a detailed breakdown.


On Overcoming Miscalibrated Conversational Priors in LLM-based Chatbots

arXiv.org Artificial Intelligence

We explore the use of Large Language Model (LLM-based) chatbots to power recommender systems. We observe that the chatbots respond poorly when they encounter under-specified requests (e.g., they make incorrect assumptions, hedge with a long response, or refuse to answer). We conjecture that such miscalibrated response tendencies (i.e., conversational priors) can be attributed to LLM fine-tuning using annotators -- single-turn annotations may not capture multi-turn conversation utility, and the annotators' preferences may not even be representative of users interacting with a recommender system. We first analyze public LLM chat logs to conclude that query under-specification is common. Next, we study synthetic recommendation problems with configurable latent item utilities and frame them as Partially Observed Decision Processes (PODP). We find that pre-trained LLMs can be sub-optimal for PODPs and derive better policies that clarify under-specified queries when appropriate. Then, we re-calibrate LLMs by prompting them with learned control messages to approximate the improved policy. Finally, we show empirically that our lightweight learning approach effectively uses logged conversation data to re-calibrate the response strategies of LLM-based chatbots for recommendation tasks.


Node Similarities under Random Projections: Limits and Pathological Cases

arXiv.org Machine Learning

Random Projections have been widely used to generate embeddings for various graph tasks due to their computational efficiency. The majority of applications have been justified through the Johnson-Lindenstrauss Lemma. In this paper, we take a step further and investigate how well dot product and cosine similarity are preserved by Random Projections. Our analysis provides new theoretical results, identifies pathological cases, and tests them with numerical experiments. We find that, for nodes of lower or higher degrees, the method produces especially unreliable embeddings for the dot product, regardless of whether the adjacency or the (normalized version) transition is used. With respect to the statistical noise introduced by Random Projections, we show that cosine similarity produces remarkably more precise approximations.


The Use of Generative Search Engines for Knowledge Work and Complex Tasks

arXiv.org Artificial Intelligence

Until recently, search engines were the predominant method for people to access online information. The recent emergence of large language models (LLMs) has given machines new capabilities such as the ability to generate new digital artifacts like text, images, code etc., resulting in a new tool, a generative search engine, which combines the capabilities of LLMs with a traditional search engine. Through the empirical analysis of Bing Copilot (Bing Chat), one of the first publicly available generative search engines, we analyze the types and complexity of tasks that people use Bing Copilot for compared to Bing Search. Findings indicate that people use the generative search engine for more knowledge work tasks that are higher in cognitive complexity than were commonly done with a traditional search engine.


TnT-LLM: Text Mining at Scale with Large Language Models

arXiv.org Artificial Intelligence

Transforming unstructured text into structured and meaningful forms, organized by useful category labels, is a fundamental step in text mining for downstream analysis and application. However, most existing methods for producing label taxonomies and building text-based label classifiers still rely heavily on domain expertise and manual curation, making the process expensive and time-consuming. This is particularly challenging when the label space is under-specified and large-scale data annotations are unavailable. In this paper, we address these challenges with Large Language Models (LLMs), whose prompt-based interface facilitates the induction and use of large-scale pseudo labels. We propose TnT-LLM, a two-phase framework that employs LLMs to automate the process of end-to-end label generation and assignment with minimal human effort for any given use-case. In the first phase, we introduce a zero-shot, multi-stage reasoning approach which enables LLMs to produce and refine a label taxonomy iteratively. In the second phase, LLMs are used as data labelers that yield training samples so that lightweight supervised classifiers can be reliably built, deployed, and served at scale. We apply TnT-LLM to the analysis of user intent and conversational domain for Bing Copilot (formerly Bing Chat), an open-domain chat-based search engine. Extensive experiments using both human and automatic evaluation metrics demonstrate that TnT-LLM generates more accurate and relevant label taxonomies when compared against state-of-the-art baselines, and achieves a favorable balance between accuracy and efficiency for classification at scale. We also share our practical experiences and insights on the challenges and opportunities of using LLMs for large-scale text mining in real-world applications.