Neven, Hartmut
Need is All You Need: Homeostatic Neural Networks Adapt to Concept Shift
Man, Kingson, Damasio, Antonio, Neven, Hartmut
In living organisms, homeostasis is the natural regulation of internal states aimed at maintaining conditions compatible with life. Typical artificial systems are not equipped with comparable regulatory features. Here, we introduce an artificial neural network that incorporates homeostatic features. Its own computing substrate is placed in a needful and vulnerable relation to the very objects over which it computes. For example, artificial neurons performing classification of MNIST digits or Fashion-MNIST articles of clothing may receive excitatory or inhibitory effects, which alter their own learning rate as a direct result of perceiving and classifying the digits. In this scenario, accurate recognition is desirable to the agent itself because it guides decisions to regulate its vulnerable internal states and functionality. Counterintuitively, the addition of vulnerability to a learner does not necessarily impair its performance. On the contrary, self-regulation in response to vulnerability confers benefits under certain conditions. We show that homeostatic design confers increased adaptability under concept shift, in which the relationships between labels and data change over time, and that the greatest advantages are obtained under the highest rates of shift. This necessitates the rapid un-learning of past associations and the re-learning of new ones. We also demonstrate the superior abilities of homeostatic learners in environments with dynamically changing rates of concept shift. Our homeostatic design exposes the artificial neural network's thinking machinery to the consequences of its own "thoughts", illustrating the advantage of putting one's own "skin in the game" to improve fluid intelligence.
Learning to Decode the Surface Code with a Recurrent, Transformer-Based Neural Network
Bausch, Johannes, Senior, Andrew W, Heras, Francisco J H, Edlich, Thomas, Davies, Alex, Newman, Michael, Jones, Cody, Satzinger, Kevin, Niu, Murphy Yuezhen, Blackwell, Sam, Holland, George, Kafri, Dvir, Atalaya, Juan, Gidney, Craig, Hassabis, Demis, Boixo, Sergio, Neven, Hartmut, Kohli, Pushmeet
Quantum error-correction is a prerequisite for reliable quantum computation. Towards this goal, we present a recurrent, transformer-based neural network which learns to decode the surface code, the leading quantum error-correction code. Our decoder outperforms state-of-the-art algorithmic decoders on real-world data from Google's Sycamore quantum processor for distance 3 and 5 surface codes. On distances up to 11, the decoder maintains its advantage on simulated data with realistic noise including cross-talk, leakage, and analog readout signals, and sustains its accuracy far beyond the 25 cycles it was trained on. Our work illustrates the ability of machine learning to go beyond human-designed algorithms by learning from data directly, highlighting machine learning as a strong contender for decoding in quantum computers.
Quantum advantage in learning from experiments
Huang, Hsin-Yuan, Broughton, Michael, Cotler, Jordan, Chen, Sitan, Li, Jerry, Mohseni, Masoud, Neven, Hartmut, Babbush, Ryan, Kueng, Richard, Preskill, John, McClean, Jarrod R.
Quantum technology has the potential to revolutionize how we acquire and process experimental data to learn about the physical world. An experimental setup that transduces data from a physical system to a stable quantum memory, and processes that data using a quantum computer, could have significant advantages over conventional experiments in which the physical system is measured and the outcomes are processed using a classical computer. We prove that, in various tasks, quantum machines can learn from exponentially fewer experiments than those required in conventional experiments. The exponential advantage holds in predicting properties of physical systems, performing quantum principal component analysis on noisy states, and learning approximate models of physical dynamics. In some tasks, the quantum processing needed to achieve the exponential advantage can be modest; for example, one can simultaneously learn about many noncommuting observables by processing only two copies of the system. Conducting experiments with up to 40 superconducting qubits and 1300 quantum gates, we demonstrate that a substantial quantum advantage can be realized using today's relatively noisy quantum processors. Our results highlight how quantum technology can enable powerful new strategies to learn about nature.
Universal discriminative quantum neural networks
Chen, Hongxiang, Wossnig, Leonard, Severini, Simone, Neven, Hartmut, Mohseni, Masoud
Quantum mechanics fundamentally forbids deterministic discrimination of quantum states and processes. However, the ability to optimally distinguish various classes of quantum data is an important primitive in quantum information science. In this work, we train near-term quantum circuits to classify data represented by non-orthogonal quantum probability distributions using the Adam stochastic optimization algorithm. This is achieved by iterative interactions of a classical device with a quantum processor to discover the parameters of an unknown non-unitary quantum circuit. This circuit learns to simulates the unknown structure of a generalized quantum measurement, or Positive-Operator-Value-Measure (POVM), that is required to optimally distinguish possible distributions of quantum inputs. Notably we use universal circuit topologies, with a theoretically motivated circuit design, which guarantees that our circuits can in principle learn to perform arbitrary input-output mappings. Our numerical simulations show that shallow quantum circuits could be trained to discriminate among various pure and mixed quantum states exhibiting a trade-off between minimizing erroneous and inconclusive outcomes with comparable performance to theoretically optimal POVMs. We train the circuit on different classes of quantum data and evaluate the generalization error on unseen mixed quantum states. This generalization power hence distinguishes our work from standard circuit optimization and provides an example of quantum machine learning for a task that has inherently no classical analogue.
Bayesian Sampling Using Stochastic Gradient Thermostats
Ding, Nan, Fang, Youhan, Babbush, Ryan, Chen, Changyou, Skeel, Robert D., Neven, Hartmut
Dynamics-based sampling methods, such as Hybrid Monte Carlo (HMC) and Langevin dynamics (LD), are commonly used to sample target distributions. Recently, such approaches have been combined with stochastic gradient techniques to increase sampling efficiency when dealing with large datasets. An outstanding problem with this approach is that the stochastic gradient introduces an unknown amount of noise which can prevent proper sampling after discretization. To remedy this problem, we show that one can leverage a small number of additional variables in order to stabilize momentum fluctuations induced by the unknown noise. Our method is inspired by the idea of a thermostat in statistical physics and is justified by a general theory.