Nema, Preksha
ReTAG: Reasoning Aware Table to Analytic Text Generation
Ghosal, Deepanway, Nema, Preksha, Raghuveer, Aravindan
The task of table summarization involves generating text that both succinctly and accurately represents the table or a specific set of highlighted cells within a table. While significant progress has been made in table to text generation techniques, models still mostly generate descriptive summaries, which reiterates the information contained within the table in sentences. Through analysis of popular table to text benchmarks (ToTTo (Parikh et al., 2020 and InfoTabs (Gupta et al., 2020) we observe that in order to generate the ideal summary, multiple types of reasoning is needed coupled with access to knowledge beyond the scope of the table. To address this gap, we propose ReTAG, a table and reasoning aware model that uses vector-quantization to infuse different types of analytical reasoning into the output. ReTAG achieves 2.2%, 2.9% improvement on the PARENT metric in the relevant slice of ToTTo and InfoTabs for the table to text generation task over state of the art baselines. Through human evaluation, we observe that output from ReTAG is upto 12% more faithful and analytical compared to a strong table-aware model. To the best of our knowledge, ReTAG is the first model that can controllably use multiple reasoning methods within a structure-aware sequence to sequence model to surpass state of the art performance in multiple table to text tasks. We extend (and open source 35.6K analytical, 55.9k descriptive instances) the ToTTo, InfoTabs datasets with the reasoning categories used in each reference sentences.
T-STAR: Truthful Style Transfer using AMR Graph as Intermediate Representation
Jangra, Anubhav, Nema, Preksha, Raghuveer, Aravindan
Unavailability of parallel corpora for training text style transfer (TST) models is a very challenging yet common scenario. Also, TST models implicitly need to preserve the content while transforming a source sentence into the target style. To tackle these problems, an intermediate representation is often constructed that is devoid of style while still preserving the meaning of the source sentence. In this work, we study the usefulness of Abstract Meaning Representation (AMR) graph as the intermediate style agnostic representation. We posit that semantic notations like AMR are a natural choice for an intermediate representation. Hence, we propose T-STAR: a model comprising of two components, text-to-AMR encoder and a AMR-to-text decoder. We propose several modeling improvements to enhance the style agnosticity of the generated AMR. To the best of our knowledge, T-STAR is the first work that uses AMR as an intermediate representation for TST. With thorough experimental evaluation we show T-STAR significantly outperforms state of the art techniques by achieving on an average 15.2% higher content preservation with negligible loss (3% approx.) in style accuracy. Through detailed human evaluation with 90,000 ratings, we also show that T-STAR has up to 50% lesser hallucinations compared to state of the art TST models.
A Framework for Rationale Extraction for Deep QA models
Ramnath, Sahana, Nema, Preksha, Sahni, Deep, Khapra, Mitesh M.
As neural-network-based QA models become deeper and more complex, there is a demand for robust frameworks which can access a model's rationale for its prediction. Current techniques that provide insights on a model's working are either dependent on adversarial datasets or are proposing models with explicit explanation generation components. These techniques are time-consuming and challenging to extend to existing models and new datasets. In this work, we use `Integrated Gradients' to extract rationale for existing state-of-the-art models in the task of Reading Comprehension based Question Answering (RCQA). On detailed analysis and comparison with collected human rationales, we find that though ~40-80% words of extracted rationale coincide with the human rationale (precision), only 6-19% of human rationale is present in the extracted rationale (recall).
The heads hypothesis: A unifying statistical approach towards understanding multi-headed attention in BERT
Pande, Madhura, Budhraja, Aakriti, Nema, Preksha, Kumar, Pratyush, Khapra, Mitesh M.
Multi-headed attention heads are a mainstay in transformer-based models. Different methods have been proposed to classify the role of each attention head based on the relations between tokens which have high pair-wise attention. These roles include syntactic (tokens with some syntactic relation), local (nearby tokens), block (tokens in the same sentence) and delimiter (the special [CLS], [SEP] tokens). There are two main challenges with existing methods for classification: (a) there are no standard scores across studies or across functional roles, and (b) these scores are often average quantities measured across sentences without capturing statistical significance. In this work, we formalize a simple yet effective score that generalizes to all the roles of attention heads and employs hypothesis testing on this score for robust inference. This provides us the right lens to systematically analyze attention heads and confidently comment on many commonly posed questions on analyzing the BERT model. In particular, we comment on the co-location of multiple functional roles in the same attention head, the distribution of attention heads across layers, and effect of fine-tuning for specific NLP tasks on these functional roles.
Towards Interpreting BERT for Reading Comprehension Based QA
Ramnath, Sahana, Nema, Preksha, Sahni, Deep, Khapra, Mitesh M.
BERT and its variants have achieved state-of-the-art performance in various NLP tasks. Since then, various works have been proposed to analyze the linguistic information being captured in BERT. However, the current works do not provide an insight into how BERT is able to achieve near human-level performance on the task of Reading Comprehension based Question Answering. In this work, we attempt to interpret BERT for RCQA. Since BERT layers do not have predefined roles, we define a layer's role or functionality using Integrated Gradients. Based on the defined roles, we perform a preliminary analysis across all layers. We observed that the initial layers focus on query-passage interaction, whereas later layers focus more on contextual understanding and enhancing the answer prediction. Specifically for quantifier questions (how much/how many), we notice that BERT focuses on confusing words (i.e., on other numerical quantities in the passage) in the later layers, but still manages to predict the answer correctly. The fine-tuning and analysis scripts will be publicly available at https://github.com/iitmnlp/BERT-Analysis-RCQA .
Let's Ask Again: Refine Network for Automatic Question Generation
Nema, Preksha, Mohankumar, Akash Kumar, Khapra, Mitesh M., Srinivasan, Balaji Vasan, Ravindran, Balaraman
In this work, we focus on the task of Automatic Question Generation (AQG) where given a passage and an answer the task is to generate the corresponding question. It is desired that the generated question should be (i) grammatically correct (ii) answerable from the passage and (iii) specific to the given answer. An analysis of existing AQG models shows that they produce questions which do not adhere to one or more of {the above-mentioned qualities}. In particular, the generated questions look like an incomplete draft of the desired question with a clear scope for refinement. {To alleviate this shortcoming}, we propose a method which tries to mimic the human process of generating questions by first creating an initial draft and then refining it. More specifically, we propose Refine Network (RefNet) which contains two decoders. The second decoder uses a dual attention network which pays attention to both (i) the original passage and (ii) the question (initial draft) generated by the first decoder. In effect, it refines the question generated by the first decoder, thereby making it more correct and complete. We evaluate RefNet on three datasets, \textit{viz.}, SQuAD, HOTPOT-QA, and DROP, and show that it outperforms existing state-of-the-art methods by 7-16\% on all of these datasets. Lastly, we show that we can improve the quality of the second decoder on specific metrics, such as, fluency and answerability by explicitly rewarding revisions that improve on the corresponding metric during training. The code has been made publicly available \footnote{https://github.com/PrekshaNema25/RefNet-QG}
A Mixed Hierarchical Attention based Encoder-Decoder Approach for Standard Table Summarization
Jain, Parag, Laha, Anirban, Sankaranarayanan, Karthik, Nema, Preksha, Khapra, Mitesh M., Shetty, Shreyas
Structured data summarization involves generation of natural language summaries from structured input data. In this work, we consider summarizing structured data occurring in the form of tables as they are prevalent across a wide variety of domains. We formulate the standard table summarization problem, which deals with tables conforming to a single predefined schema. To this end, we propose a mixed hierarchical attention based encoder-decoder model which is able to leverage the structure in addition to the content of the tables. Our experiments on the publicly available WEATHERGOV dataset show around 18 BLEU (~ 30%) improvement over the current state-of-the-art.
Generating Descriptions from Structured Data Using a Bifocal Attention Mechanism and Gated Orthogonalization
Nema, Preksha, Shetty, Shreyas, Jain, Parag, Laha, Anirban, Sankaranarayanan, Karthik, Khapra, Mitesh M.
In this work, we focus on the task of generating natural language descriptions from a structured table of facts containing fields (such as nationality, occupation, etc) and values (such as Indian, actor, director, etc). One simple choice is to treat the table as a sequence of fields and values and then use a standard seq2seq model for this task. However, such a model is too generic and does not exploit task-specific characteristics. For example, while generating descriptions from a table, a human would attend to information at two levels: (i) the fields (macro level) and (ii) the values within the field (micro level). Further, a human would continue attending to a field for a few timesteps till all the information from that field has been rendered and then never return back to this field (because there is nothing left to say about it). To capture this behavior we use (i) a fused bifocal attention mechanism which exploits and combines this micro and macro level information and (ii) a gated orthogonalization mechanism which tries to ensure that a field is remembered for a few time steps and then forgotten. We experiment with a recently released dataset which contains fact tables about people and their corresponding one line biographical descriptions in English. In addition, we also introduce two similar datasets for French and German. Our experiments show that the proposed model gives 21% relative improvement over a recently proposed state of the art method and 10% relative improvement over basic seq2seq models. The code and the datasets developed as a part of this work are publicly available.