Neal, Radford M.
Gaussian Process Regression with Heteroscedastic or Non-Gaussian Residuals
Wang, Chunyi, Neal, Radford M.
Gaussian Process (GP) regression models typically assume that residuals are Gaussian and have the same variance for all observations. However, applications with input-dependent noise (heteroscedastic residuals) frequently arise in practice, as do applications in which the residuals do not have a Gaussian distribution. In this paper, we propose a GP Regression model with a latent variable that serves as an additional unobserved covariate for the regression. This model (which we call GPLC) allows for heteroscedasticity since it allows the function to have a changing partial derivative with respect to this unobserved covariate. With a suitable covariance function, our GPLC model can handle (a) Gaussian residuals with input-dependent variance, or (b) non-Gaussian residuals with input-dependent variance, or (c) Gaussian residuals with constant variance. We compare our model, using synthetic datasets, with a model proposed by Goldberg, Williams and Bishop (1998), which we refer to as GPLV, which only deals with case (a), as well as a standard GP model which can handle only case (c). Markov Chain Monte Carlo methods are developed for both modelsl. Experiments show that when the data is heteroscedastic, both GPLC and GPLV give better results (smaller mean squared error and negative log-probability density) than standard GP regression. In addition, when the residual are Gaussian, our GPLC model is generally nearly as good as GPLV, while when the residuals are non-Gaussian, our GPLC model is better than GPLV.
Modeling Dyadic Data with Binary Latent Factors
Meeds, Edward, Ghahramani, Zoubin, Neal, Radford M., Roweis, Sam T.
We introduce binary matrix factorization, a novel model for unsupervised matrix decomposition.The decomposition is learned by fitting a nonparametric Bayesian probabilistic model with binary latent variables to a matrix of dyadic data. Unlike bi-clustering models, which assign each row or column to a single cluster based on a categorical hidden feature, our binary feature model reflects the prior belief that items and attributes can be associated with more than one latent cluster at a time. We provide simple learning and inference rules for this new model and show how to extend it to an infinite model in which the number of features is not a priori fixed but is allowed to grow with the size of the data.
Bayesian Detection of Infrequent Differences in Sets of Time Series with Shared Structure
Listgarten, Jennifer, Neal, Radford M., Roweis, Sam T., Puckrin, Rachel, Cutler, Sean
We present a hierarchical Bayesian model for sets of related, but different, classes of time series data. Our model performs alignment simultaneously across all classes, while detecting and characterizing class-specific differences. During inference themodel produces, for each class, a distribution over a canonical representation ofthe class.
A Method for Compressing Parameters in Bayesian Models with Application to Logistic Sequence Prediction Models
Li, Longhai, Neal, Radford M.
Bayesian classification and regression with high order interactions is largely infeasible because Markov chain Monte Carlo (MCMC) would need to be applied with a great many parameters, whose number increases rapidly with the order. In this paper we show how to make it feasible by effectively reducing the number of parameters, exploiting the fact that many interactions have the same values for all training cases. Our method uses a single ``compressed'' parameter to represent the sum of all parameters associated with a set of patterns that have the same value for all training cases. Using symmetric stable distributions as the priors of the original parameters, we can easily find the priors of these compressed parameters. We therefore need to deal only with a much smaller number of compressed parameters when training the model with MCMC. The number of compressed parameters may have converged before considering the highest possible order. After training the model, we can split these compressed parameters into the original ones as needed to make predictions for test cases. We show in detail how to compress parameters for logistic sequence prediction models. Experiments on both simulated and real data demonstrate that a huge number of parameters can indeed be reduced by our compression method.
Multiple Alignment of Continuous Time Series
Listgarten, Jennifer, Neal, Radford M., Roweis, Sam T., Emili, Andrew
Multiple realizations of continuous-valued time series from a stochastic process often contain systematic variations in rate and amplitude. To leverage the information contained in such noisy replicate sets, we need to align them in an appropriate way (for example, to allow the data to be properly combined by adaptive averaging). We present the Continuous Profile Model (CPM), a generative model in which each observed time series is a non-uniformly subsampled version of a single latent trace, to which local rescaling and additive noise are applied. After unsupervised training, the learned trace represents a canonical, high resolution fusion of all the replicates. As well, an alignment in time and scale of each observation to this trace can be found by inference in the model. We apply CPM to successfully align speech signals from multiple speakers and sets of Liquid Chromatography-Mass Spectrometry proteomic data.
Multiple Alignment of Continuous Time Series
Listgarten, Jennifer, Neal, Radford M., Roweis, Sam T., Emili, Andrew
Multiple realizations of continuous-valued time series from a stochastic process often contain systematic variations in rate and amplitude. To leverage the information contained in such noisy replicate sets, we need to align them in an appropriate way (for example, to allow the data to be properly combined by adaptive averaging). We present the Continuous Profile Model (CPM), a generative model in which each observed time series is a non-uniformly subsampled version of a single latent trace, to which local rescaling and additive noise are applied. After unsupervised training, the learned trace represents a canonical, high resolution fusion of all the replicates. As well, an alignment in time and scale of each observation to this trace can be found by inference in the model. We apply CPM to successfully align speech signals from multiple speakers and sets of Liquid Chromatography-Mass Spectrometry proteomic data.
Inferring State Sequences for Non-linear Systems with Embedded Hidden Markov Models
Neal, Radford M., Beal, Matthew J., Roweis, Sam T.
We describe a Markov chain method for sampling from the distribution of the hidden state sequence in a nonlinear dynamical system, given a sequence of observations. This method updates all states in the sequence simultaneously using an embedded Hidden Markov Model (HMM). An update begins with the creation of "pools" of candidate states at each time. We then define an embedded HMM whose states are indexes within these pools. Using a forward-backward dynamic programming algorithm, we can efficiently choose a state sequence with the appropriate probabilities from the exponentially large number of state sequences that pass through states in these pools. We illustrate the method in a simple one-dimensional example, and in an example showing how an embedded HMM can be used to in effect discretize the state space without any discretization error. We also compare the embedded HMM to a particle smoother on a more substantial problem of inferring human motion from 2D traces of markers.
Bayesian Learning via Stochastic Dynamics
Neal, Radford M.
The attempt to find a single "optimal" weight vector in conventional networktraining can lead to overfitting and poor generalization. Bayesian methods avoid this, without the need for a validation set, by averaging the outputs of many networks with weights sampled from the posterior distribution given the training data. This sample can be obtained by simulating a stochastic dynamical system that has the posterior as its stationary distribution.
Bayesian Learning via Stochastic Dynamics
Neal, Radford M.
The attempt to find a single "optimal" weight vector in conventional network training can lead to overfitting and poor generalization. Bayesian methods avoid this, without the need for a validation set, by averaging the outputs of many networks with weights sampled from the posterior distribution given the training data. This sample can be obtained by simulating a stochastic dynamical system that has the posterior as its stationary distribution.