Nawaz, Muhammad Wasim
Accurate Multi-Category Student Performance Forecasting at Early Stages of Online Education Using Neural Networks
Junejo, Naveed Ur Rehman, Nawaz, Muhammad Wasim, Huang, Qingsheng, Dong, Xiaoqing, Wang, Chang, Zheng, Gengzhong
The ability to accurately predict and analyze student performance in online education, both at the outset and throughout the semester, is vital. Most of the published studies focus on binary classification (Fail or Pass) but there is still a significant research gap in predicting students' performance across multiple categories. This study introduces a novel neural network-based approach capable of accurately predicting student performance and identifying vulnerable students at early stages of the online courses. The Open University Learning Analytics (OULA) dataset is employed to develop and test the proposed model, which predicts outcomes in Distinction, Fail, Pass, and Withdrawn categories. The OULA dataset is preprocessed to extract features from demographic data, assessment data, and clickstream interactions within a Virtual Learning Environment (VLE). Comparative simulations indicate that the proposed model significantly outperforms existing baseline models including Artificial Neural Network Long Short Term Memory (ANN-LSTM), Random Forest (RF) 'gini', RF 'entropy' and Deep Feed Forward Neural Network (DFFNN) in terms of accuracy, precision, recall, and F1-score. The results indicate that the prediction accuracy of the proposed method is about 25% more than the existing state-of-the-art. Furthermore, compared to existing methodologies, the model demonstrates superior predictive capability across temporal course progression, achieving superior accuracy even at the initial 20% phase of course completion.
Cuff-less Arterial Blood Pressure Waveform Synthesis from Single-site PPG using Transformer & Frequency-domain Learning
Tahir, Muhammad Ahmad, Mehmood, Ahsan, Rahman, Muhammad Mahboob Ur, Nawaz, Muhammad Wasim, Riaz, Kashif, Abbasi, Qammer H.
We propose two novel purpose-built deep learning (DL) models for synthesis of the arterial blood pressure (ABP) waveform in a cuff-less manner, using a single-site photoplethysmography (PPG) signal. We utilize the public UCI dataset on cuff-less blood pressure (CLBP) estimation to train and evaluate our DL models. Firstly, we implement a transformer model that incorporates positional encoding, multi-head attention, layer normalization, and dropout techniques, and synthesizes the ABP waveform with a mean absolute error (MAE) of 14. Secondly, we implement a frequency-domain (FD) learning approach where we first obtain the discrete cosine transform (DCT) coefficients of the PPG and ABP signals corresponding to two cardiac cycles, and then learn a linear/non-linear (L/NL) regression between them. We learn that the FD L/NL regression model outperforms the transformer model by achieving an MAE of 11.87 and 8.01, for diastolic blood pressure (DBP) and systolic blood pressure (SBP), respectively. Our FD L/NL regression model also fulfills the AAMI criterion of utilizing data from more than 85 subjects, and achieves grade B by the BHS criterion.