Nassar, Ahmed
Granite Vision: a lightweight, open-source multimodal model for enterprise Intelligence
Granite Vision Team, null, Karlinsky, Leonid, Arbelle, Assaf, Daniels, Abraham, Nassar, Ahmed, Alfassi, Amit, Wu, Bo, Schwartz, Eli, Joshi, Dhiraj, Kondic, Jovana, Shabtay, Nimrod, Li, Pengyuan, Herzig, Roei, Abedin, Shafiq, Perek, Shaked, Harary, Sivan, Barzelay, Udi, Goldfarb, Adi Raz, Oliva, Aude, Wieles, Ben, Bhattacharjee, Bishwaranjan, Huang, Brandon, Auer, Christoph, Gutfreund, Dan, Beymer, David, Wood, David, Kuehne, Hilde, Hansen, Jacob, Shtok, Joseph, Wong, Ken, Bathen, Luis Angel, Mishra, Mayank, Lysak, Maksym, Dolfi, Michele, Yurochkin, Mikhail, Livathinos, Nikolaos, Harel, Nimrod, Azulai, Ophir, Naparstek, Oshri, de Lima, Rafael Teixeira, Panda, Rameswar, Doveh, Sivan, Gupta, Shubham, Das, Subhro, Zawad, Syed, Kim, Yusik, He, Zexue, Brooks, Alexander, Goodhart, Gabe, Govindjee, Anita, Leist, Derek, Ibrahim, Ibrahim, Soffer, Aya, Cox, David, Soule, Kate, Lastras, Luis, Desai, Nirmit, Ofek-koifman, Shila, Raghavan, Sriram, Syeda-Mahmood, Tanveer, Staar, Peter, Drory, Tal, Feris, Rogerio
Ensuring the safety of generative MLLMs is absolutely crucial in order to prevent harm, build trust, address ethical concerns, and enable their responsible deployment in real-world applications. Our results demonstrate that Granite Vision performs almost at par with baselines (despite being the lightest MLLM in the comparison pool) for VLM-as-a-Judge task. Notably, the addition of Safety Vectors to Granite Vision leads to a significant improvement in safety classification performance. We do acknowledge that further work needs to be done to improve high-level reasoning and correct occasional incorrect outputs to improve reliability in sensitive tasks, which require nuanced classification. To address these, we will incorporate more reasoning-focused and structure-related data into the training process in the future. In addition, we showed in this paper that finding safety vectors (SVs) in Granite Vision's attention heads led to significant improvements when safety tasks were reformulated as classification problems. Current reliance for SVs is on few-shot samples which are informative but may have limited scope in terms of capturing the range of possible safety issues that can be encountered. To further improve the model's ability to identify and address all safety concerns, we plan to investigate scaling up SVs using more training data in future research.
Docling: An Efficient Open-Source Toolkit for AI-driven Document Conversion
Livathinos, Nikolaos, Auer, Christoph, Lysak, Maksym, Nassar, Ahmed, Dolfi, Michele, Vagenas, Panos, Ramis, Cesar Berrospi, Omenetti, Matteo, Dinkla, Kasper, Kim, Yusik, Gupta, Shubham, de Lima, Rafael Teixeira, Weber, Valery, Morin, Lucas, Meijer, Ingmar, Kuropiatnyk, Viktor, Staar, Peter W. J.
We introduce Docling, an easy-to-use, self-contained, MIT-licensed, open-source toolkit for document conversion, that can parse several types of popular document formats into a unified, richly structured representation. It is powered by state-of-the-art specialized AI models for layout analysis (DocLayNet) and table structure recognition (TableFormer), and runs efficiently on commodity hardware in a small resource budget. Docling is released as a Python package and can be used as a Python API or as a CLI tool. Docling's modular architecture and efficient document representation make it easy to implement extensions, new features, models, and customizations. Docling has been already integrated in other popular open-source frameworks (e.g., LangChain, LlamaIndex, spaCy), making it a natural fit for the processing of documents and the development of high-end applications. The open-source community has fully engaged in using, promoting, and developing for Docling, which gathered 10k stars on GitHub in less than a month and was reported as the No. 1 trending repository in GitHub worldwide in November 2024.
KVP10k : A Comprehensive Dataset for Key-Value Pair Extraction in Business Documents
Naparstek, Oshri, Pony, Roi, Shapira, Inbar, Dahood, Foad Abo, Azulai, Ophir, Yaroker, Yevgeny, Rubinstein, Nadav, Lysak, Maksym, Staar, Peter, Nassar, Ahmed, Livathinos, Nikolaos, Auer, Christoph, Amrani, Elad, Friedman, Idan, Prince, Orit, Burshtein, Yevgeny, Goldfarb, Adi Raz, Barzelay, Udi
In recent years, the challenge of extracting information from business documents has emerged as a critical task, finding applications across numerous domains. This effort has attracted substantial interest from both industry and academy, highlighting its significance in the current technological landscape. Most datasets in this area are primarily focused on Key Information Extraction (KIE), where the extraction process revolves around extracting information using a specific, predefined set of keys. Unlike most existing datasets and benchmarks, our focus is on discovering key-value pairs (KVPs) without relying on predefined keys, navigating through an array of diverse templates and complex layouts. This task presents unique challenges, primarily due to the absence of comprehensive datasets and benchmarks tailored for non-predetermined KVP extraction. To address this gap, we introduce KVP10k , a new dataset and benchmark specifically designed for KVP extraction. The dataset contains 10707 richly annotated images. In our benchmark, we also introduce a new challenging task that combines elements of KIE as well as KVP in a single task. KVP10k sets itself apart with its extensive diversity in data and richly detailed annotations, paving the way for advancements in the field of information extraction from complex business documents.
ESG Accountability Made Easy: DocQA at Your Service
Mishra, Lokesh, Berrospi, Cesar, Dinkla, Kasper, Antognini, Diego, Fusco, Francesco, Bothur, Benedikt, Lysak, Maksym, Livathinos, Nikolaos, Nassar, Ahmed, Vagenas, Panagiotis, Morin, Lucas, Auer, Christoph, Dolfi, Michele, Staar, Peter
We present Deep Search DocQA. This application enables information extraction from documents via a question-answering conversational assistant. The system integrates several technologies from different AI disciplines consisting of document conversion to machine-readable format (via computer vision), finding relevant data (via natural language processing), and formulating an eloquent response (via large language models). Users can explore over 10,000 Environmental, Social, and Governance (ESG) disclosure reports from over 2000 corporations. The Deep Search platform can be accessed at: https://ds4sd.github.io.
Finding Failures in High-Fidelity Simulation using Adaptive Stress Testing and the Backward Algorithm
Koren, Mark, Nassar, Ahmed, Kochenderfer, Mykel J.
Validating the safety of autonomous systems generally requires the use of high-fidelity simulators that adequately capture the variability of real-world scenarios. However, it is generally not feasible to exhaustively search the space of simulation scenarios for failures. Adaptive stress testing (AST) is a method that uses reinforcement learning to find the most likely failure of a system. AST with a deep reinforcement learning solver has been shown to be effective in finding failures across a range of different systems. This approach generally involves running many simulations, which can be very expensive when using a high-fidelity simulator. To improve efficiency, we present a method that first finds failures in a low-fidelity simulator. It then uses the backward algorithm, which trains a deep neural network policy using a single expert demonstration, to adapt the low-fidelity failures to high-fidelity. We have created a series of autonomous vehicle validation case studies that represent some of the ways low-fidelity and high-fidelity simulators can differ, such as time discretization. We demonstrate in a variety of case studies that this new AST approach is able to find failures with significantly fewer high-fidelity simulation steps than are needed when just running AST directly in high-fidelity. As a proof of concept, we also demonstrate AST on NVIDIA's DriveSim simulator, an industry state-of-the-art high-fidelity simulator for finding failures in autonomous vehicles.