Nareti, Utsav Kumar
Unraveling Movie Genres through Cross-Attention Fusion of Bi-Modal Synergy of Poster
Nareti, Utsav Kumar, Adak, Chandranath, Chattopadhyay, Soumi, Wang, Pichao
Movie posters are not just decorative; they are meticulously designed to capture the essence of a movie, such as its genre, storyline, and tone/vibe. For decades, movie posters have graced cinema walls, billboards, and now our digital screens as a form of digital posters. Movie genre classification plays a pivotal role in film marketing, audience engagement, and recommendation systems. Previous explorations into movie genre classification have been mostly examined in plot summaries, subtitles, trailers and movie scenes. Movie posters provide a pre-release tantalizing glimpse into a film's key aspects, which can ignite public interest. In this paper, we presented the framework that exploits movie posters from a visual and textual perspective to address the multilabel movie genre classification problem. Firstly, we extracted text from movie posters using an OCR and retrieved the relevant embedding. Next, we introduce a cross-attention-based fusion module to allocate attention weights to visual and textual embedding. In validating our framework, we utilized 13882 posters sourced from the Internet Movie Database (IMDb). The outcomes of the experiments indicate that our model exhibited promising performance and outperformed even some prominent contemporary architectures.
Demystifying Visual Features of Movie Posters for Multi-Label Genre Identification
Nareti, Utsav Kumar, Adak, Chandranath, Chattopadhyay, Soumi
In the film industry, movie posters have been an essential part of advertising and marketing for many decades, and continue to play a vital role even today in the form of digital posters through online, social media and OTT platforms. Typically, movie posters can effectively promote and communicate the essence of a film, such as its genre, visual style/ tone, vibe and storyline cue/ theme, which are essential to attract potential viewers. Identifying the genres of a movie often has significant practical applications in recommending the film to target audiences. Previous studies on movie genre identification are limited to subtitles, plot synopses, and movie scenes that are mostly accessible after the movie release. Posters usually contain pre-release implicit information to generate mass interest. In this paper, we work for automated multi-label genre identification only from movie poster images, without any aid of additional textual/meta-data information about movies, which is one of the earliest attempts of its kind. Here, we present a deep transformer network with a probabilistic module to identify the movie genres exclusively from the poster. For experimental analysis, we procured 13882 number of posters of 13 genres from the Internet Movie Database (IMDb), where our model performances were encouraging and even outperformed some major contemporary architectures.