Nardelli, Pedro H. J.
Large-scale Package Deliveries with Unmanned Aerial Vehicles using Collective Learning
Narayanan, Arun, Pournaras, Evangelos, Nardelli, Pedro H. J.
Unmanned aerial vehicles (UAVs) have significant practical advantages for delivering packages, and many logistics companies have begun deploying UAVs for commercial package deliveries. To deliver packages quickly and cost-effectively, the routes taken by UAVs from depots to customers must be optimized. This route optimization problem, a type of capacitated vehicle routing problem, has recently attracted considerable research interest. However, few papers have dealt with large-scale deliveries, where the number of customers exceed 1000. We present an innovative, practical package delivery model wherein multiple UAVs deliver multiple packages to customers who are compensated for late deliveries. Further, we propose an innovative methodology that combines a new plan-generation algorithm with a collective-learning heuristic to quickly determine cost-effective paths of UAVs even for large-scale deliveries up to 10000 customers. Specialized settings are applied to a collective-learning heuristic, the Iterative Economic Planning and Optimized Selections (I-EPOS) in order to coordinate collective actions of the UAVs. To demonstrate our methodology, we applied our highly flexible approach to a depot in Heathrow Airport, London. We show that a coordinated approach, in which the UAVs collectively determine their flight paths, leads to lower operational costs than an uncoordinated approach. Further, the coordinated approach enables large-scale package deliveries.
Optimizing a Digital Twin for Fault Diagnosis in Grid Connected Inverters -- A Bayesian Approach
Mulinka, Pavol, Sahoo, Subham, Kalalas, Charalampos, Nardelli, Pedro H. J.
In this paper, a hyperparameter tuning based Bayesian optimization of digital twins is carried out to diagnose various faults in grid connected inverters. As fault detection and diagnosis require very high precision, we channelize our efforts towards an online optimization of the digital twins, which, in turn, allows a flexible implementation with limited amount of data. As a result, the proposed framework not only becomes a practical solution for model versioning and deployment of digital twins design with limited data, but also allows integration of deep learning tools to improve the hyperparameter tuning capabilities. For classification performance assessment, we consider different fault cases in virtual synchronous generator (VSG) controlled grid-forming converters and demonstrate the efficacy of our approach. Our research outcomes reveal the increased accuracy and fidelity levels achieved by our digital twin design, overcoming the shortcomings of traditional hyperparameter tuning methods.
Indoor Positioning via Gradient Boosting Enhanced with Feature Augmentation using Deep Learning
Goharfar, Ashkan, Babaki, Jaber, Rasti, Mehdi, Nardelli, Pedro H. J.
With the emerge of the Internet of Things (IoT), localization within indoor environments has become inevitable and has attracted a great deal of attention in recent years. Several efforts have been made to cope with the challenges of accurate positioning systems in the presence of signal interference. In this paper, we propose a novel deep learning approach through Gradient Boosting Enhanced with Step-Wise Feature Augmentation using Artificial Neural Network (AugBoost-ANN) for indoor localization applications as it trains over labeled data. For this purpose, we propose an IoT architecture using a star network topology to collect the Received Signal Strength Indicator (RSSI) of Bluetooth Low Energy (BLE) modules by means of a Raspberry Pi as an Access Point (AP) in an indoor environment. The dataset for the experiments is gathered in the real world in different periods to match the real environments. Next, we address the challenges of the AugBoost-ANN training which augments features in each iteration of making a decision tree using a deep neural network and the transfer learning technique. Experimental results show more than 8\% improvement in terms of accuracy in comparison with the existing gradient boosting and deep learning methods recently proposed in the literature, and our proposed model acquires a mean location accuracy of 0.77 m.