Narayanan, Ashvni
Learning Euler Factors of Elliptic Curves
Babei, Angelica, Charton, François, Costa, Edgar, Huang, Xiaoyu, Lee, Kyu-Hwan, Lowry-Duda, David, Narayanan, Ashvni, Pozdnyakov, Alexey
We apply transformer models and feedforward neural networks to predict Frobenius traces $a_p$ from elliptic curves given other traces $a_q$. We train further models to predict $a_p \bmod 2$ from $a_q \bmod 2$, and cross-analysis such as $a_p \bmod 2$ from $a_q$. Our experiments reveal that these models achieve high accuracy, even in the absence of explicit number-theoretic tools like functional equations of $L$-functions. We also present partial interpretability findings.
Towards a Mathematics Formalisation Assistant using Large Language Models
Agrawal, Ayush, Gadgil, Siddhartha, Goyal, Navin, Narayanan, Ashvni, Tadipatri, Anand
Mathematics formalisation is the task of writing mathematics (i.e., definitions, theorem statements, proofs) in natural language, as found in books and papers, into a formal language that can then be checked for correctness by a program. It is a thriving activity today, however formalisation remains cumbersome. In this paper, we explore the abilities of a large language model (Codex) to help with formalisation in the Lean theorem prover. We find that with careful input-dependent prompt selection and postprocessing, Codex is able to formalise short mathematical statements at undergrad level with nearly 75\% accuracy for $120$ theorem statements. For proofs quantitative analysis is infeasible and we undertake a detailed case study. We choose a diverse set of $13$ theorems at undergrad level with proofs that fit in two-three paragraphs. We show that with a new prompting strategy Codex can formalise these proofs in natural language with at least one out of twelve Codex completion being easy to repair into a complete proof. This is surprising as essentially no aligned data exists for formalised mathematics, particularly for proofs. These results suggest that large language models are a promising avenue towards fully or partially automating formalisation.