Goto

Collaborating Authors

 Narayana, Harishkumar


Capturing complex hand movements and object interactions using machine learning-powered stretchable smart textile gloves

arXiv.org Artificial Intelligence

Accurate real-time tracking of dexterous hand movements and interactions has numerous applications in human-computer interaction, metaverse, robotics, and tele-health. Capturing realistic hand movements is challenging because of the large number of articulations and degrees of freedom. Here, we report accurate and dynamic tracking of articulated hand and finger movements using stretchable, washable smart gloves with embedded helical sensor yarns and inertial measurement units. The sensor yarns have a high dynamic range, responding to low 0.005 % to high 155 % strains, and show stability during extensive use and washing cycles. We use multi-stage machine learning to report average joint angle estimation root mean square errors of 1.21 and 1.45 degrees for intra- and inter-subjects cross-validation, respectively, matching accuracy of costly motion capture cameras without occlusion or field of view limitations. We report a data augmentation technique that enhances robustness to noise and variations of sensors. We demonstrate accurate tracking of dexterous hand movements during object interactions, opening new avenues of applications including accurate typing on a mock paper keyboard, recognition of complex dynamic and static gestures adapted from American Sign Language and object identification.


Intelligent Knee Sleeves: A Real-time Multimodal Dataset for 3D Lower Body Motion Estimation Using Smart Textile

arXiv.org Artificial Intelligence

The kinematics of human movements and locomotion are closely linked to the activation and contractions of muscles. To investigate this, we present a multimodal dataset with benchmarks collected using a novel pair of Intelligent Knee Sleeves (Texavie MarsWear Knee Sleeves) for human pose estimation. Our system utilizes synchronized datasets that comprise time-series data from the Knee Sleeves and the corresponding ground truth labels from the visualized motion capture camera system. We employ these to generate 3D human models solely based on the wearable data of individuals performing different activities. We demonstrate the effectiveness of this camera-free system and machine learning algorithms in the assessment of various movements and exercises, including extension to unseen exercises and individuals. The results show an average error of 7.21 degrees across all eight lower body joints when compared to the ground truth, indicating the effectiveness and reliability of the Knee Sleeve system for the prediction of different lower body joints beyond the knees. The results enable human pose estimation in a seamless manner without being limited by visual occlusion or the field of view of cameras. Our results show the potential of multimodal wearable sensing in a variety of applications from home fitness to sports, healthcare, and physical rehabilitation focusing on pose and movement estimation.