Nam, Jinseok
Making Task-Oriented Dialogue Datasets More Natural by Synthetically Generating Indirect User Requests
Mannekote, Amogh, Nam, Jinseok, Li, Ziming, Gao, Jian, Boyer, Kristy Elizabeth, Dorr, Bonnie J.
Indirect User Requests (IURs), such as "It's cold in here" instead of "Could you please increase the temperature?" are common in human-human task-oriented dialogue and require world knowledge and pragmatic reasoning from the listener. While large language models (LLMs) can handle these requests effectively, smaller models deployed on virtual assistants often struggle due to resource constraints. Moreover, existing task-oriented dialogue benchmarks lack sufficient examples of complex discourse phenomena such as indirectness. To address this, we propose a set of linguistic criteria along with an LLM-based pipeline for generating realistic IURs to test natural language understanding (NLU) and dialogue state tracking (DST) models before deployment in a new domain. We also release IndirectRequests, a dataset of IURs based on the Schema Guided Dialog (SGD) corpus, as a comparative testbed for evaluating the performance of smaller models in handling indirect requests.
Neural model robustness for skill routing in large-scale conversational AI systems: A design choice exploration
Li, Han, Park, Sunghyun, Dara, Aswarth, Nam, Jinseok, Lee, Sungjin, Kim, Young-Bum, Matsoukas, Spyros, Sarikaya, Ruhi
Current state-of-the-art large-scale conversational AI or intelligent digital assistant systems in industry comprises a set of components such as Automatic Speech Recognition (ASR) and Natural Language Understanding (NLU). For some of these systems that leverage a shared NLU ontology (e.g., a centralized intent/slot schema), there exists a separate skill routing component to correctly route a request to an appropriate skill, which is either a first-party or third-party application that actually executes on a user request. The skill routing component is needed as there are thousands of skills that can either subscribe to the same intent and/or subscribe to an intent under specific contextual conditions (e.g., device has a screen). Ensuring model robustness or resilience in the skill routing component is an important problem since skills may dynamically change their subscription in the ontology after the skill routing model has been deployed to production. We show how different modeling design choices impact the model robustness in the context of skill routing on a state-of-the-art commercial conversational AI system, specifically on the choices around data augmentation, model architecture, and optimization method. We show that applying data augmentation can be a very effective and practical way to drastically improve model robustness.
Maximizing Subset Accuracy with Recurrent Neural Networks in Multi-label Classification
Nam, Jinseok, Mencía, Eneldo Loza, Kim, Hyunwoo J., Fürnkranz, Johannes
Multi-label classification is the task of predicting a set of labels for a given input instance. Classifier chains are a state-of-the-art method for tackling such problems, which essentially converts this problem into a sequential prediction problem, where the labels are first ordered in an arbitrary fashion, and the task is to predict a sequence of binary values for these labels. In this paper, we replace classifier chains with recurrent neural networks, a sequence-to-sequence prediction algorithm which has recently been successfully applied to sequential prediction tasks in many domains. The key advantage of this approach is that it allows to focus on the prediction of the positive labels only, a much smaller set than the full set of possible labels. Moreover, parameter sharing across all classifiers allows to better exploit information of previous decisions.
Maximizing Subset Accuracy with Recurrent Neural Networks in Multi-label Classification
Nam, Jinseok, Mencía, Eneldo Loza, Kim, Hyunwoo J., Fürnkranz, Johannes
Multi-label classification is the task of predicting a set of labels for a given input instance. Classifier chains are a state-of-the-art method for tackling such problems, which essentially converts this problem into a sequential prediction problem, where the labels are first ordered in an arbitrary fashion, and the task is to predict a sequence of binary values for these labels. In this paper, we replace classifier chains with recurrent neural networks, a sequence-to-sequence prediction algorithm which has recently been successfully applied to sequential prediction tasks in many domains. The key advantage of this approach is that it allows to focus on the prediction of the positive labels only, a much smaller set than the full set of possible labels. Moreover, parameter sharing across all classifiers allows to better exploit information of previous decisions. As both, classifier chains and recurrent neural networks depend on a fixed ordering of the labels, which is typically not part of a multi-label problem specification, we also compare different ways of ordering the label set, and give some recommendations on suitable ordering strategies.
All-in Text: Learning Document, Label, and Word Representations Jointly
Nam, Jinseok (Technische Universität Darmstadt) | Mencía, Eneldo Loza (Technische Universität Darmstadt) | Fürnkranz, Johannes (Technische Universität Darmstadt)
Conventional multi-label classification algorithms treat the target labels of the classification task as mere symbols that are void of an inherent semantics. However, in many cases textual descriptions of these labels are available or can be easily constructed from public document sources such as Wikipedia. In this paper, we investigate an approach for embedding documents and labels into a joint space while sharing word representations between documents and labels. For finding such embeddings, we rely on the text of documents as well as descriptions for the labels. The use of such label descriptions not only lets us expect an increased performance on conventional multi-label text classification tasks, but can also be used to make predictions for labels that have not been seen during the training phase. The potential of our method is demonstrated on the multi-label classification task of assigning keywords from the Medical Subject Headings (MeSH) to publications in biomedical research, both in a conventional and in a zero-shot learning setting.
On Learning Vector Representations in Hierarchical Label Spaces
Nam, Jinseok, Fürnkranz, Johannes
An important problem in multi-label classification is to capture label patterns or underlying structures that have an impact on such patterns. This paper addresses one such problem, namely how to exploit hierarchical structures over labels. We present a novel method to learn vector representations of a label space given a hierarchy of labels and label co-occurrence patterns. Our experimental results demonstrate qualitatively that the proposed method is able to learn regularities among labels by exploiting a label hierarchy as well as label co-occurrences. It highlights the importance of the hierarchical information in order to obtain regularities which facilitate analogical reasoning over a label space. We also experimentally illustrate the dependency of the learned representations on the label hierarchy.