Nallanathan, Arumugam
Joint Transmit and Pinching Beamforming for PASS: Optimization-Based or Learning-Based?
Xu, Xiaoxia, Mu, Xidong, Liu, Yuanwei, Nallanathan, Arumugam
A novel pinching antenna system (PASS)-enabled downlink multi-user multiple-input single-output (MISO) framework is proposed. PASS consists of multiple waveguides spanning over thousands of wavelength, which equip numerous low-cost dielectric particles, named pinching antennas (PAs), to radiate signals into free space. The positions of PAs can be reconfigured to change both the large-scale path losses and phases of signals, thus facilitating the novel pinching beamforming design. A sum rate maximization problem is formulated, which jointly optimizes the transmit and pinching beamforming to adaptively achieve constructive signal enhancement and destructive interference mitigation. To solve this highly coupled and nonconvex problem, both optimization-based and learning-based methods are proposed. 1) For the optimization-based method, a majorization-minimization and penalty dual decomposition (MM-PDD) algorithm is developed, which handles the nonconvex complex exponential component using a Lipschitz surrogate function and then invokes PDD for problem decoupling. 2) For the learning-based method, a novel Karush-Kuhn-Tucker (KKT)-guided dual learning (KDL) approach is proposed, which enables KKT solutions to be reconstructed in a data-driven manner by learning dual variables. Following this idea, a KDL-Tranformer algorithm is developed, which captures both inter-PA/inter-user dependencies and channel-state-information (CSI)-beamforming dependencies by attention mechanisms. Simulation results demonstrate that: i) The proposed PASS framework significantly outperforms conventional massive multiple input multiple output (MIMO) system even with a few PAs. ii) The proposed KDL-Transformer can improve over 30% system performance than MM-PDD algorithm, while achieving a millisecond-level response on modern GPUs.
Federated Contrastive Learning for Personalized Semantic Communication
Wang, Yining, Ni, Wanli, Yi, Wenqiang, Xu, Xiaodong, Zhang, Ping, Nallanathan, Arumugam
In this letter, we design a federated contrastive learning (FedCL) framework aimed at supporting personalized semantic communication. Our FedCL enables collaborative training of local semantic encoders across multiple clients and a global semantic decoder owned by the base station. This framework supports heterogeneous semantic encoders since it does not require client-side model aggregation. Furthermore, to tackle the semantic imbalance issue arising from heterogeneous datasets across distributed clients, we employ contrastive learning to train a semantic centroid generator (SCG). This generator obtains representative global semantic centroids that exhibit intra-semantic compactness and inter-semantic separability. Consequently, it provides superior supervision for learning discriminative local semantic features. Additionally, we conduct theoretical analysis to quantify the convergence performance of FedCL. Simulation results verify the superiority of the proposed FedCL framework compared to other distributed learning benchmarks in terms of task performance and robustness under different numbers of clients and channel conditions, especially in low signal-to-noise ratio and highly heterogeneous data scenarios.
Federated Learning and Meta Learning: Approaches, Applications, and Directions
Liu, Xiaonan, Deng, Yansha, Nallanathan, Arumugam, Bennis, Mehdi
Over the past few years, significant advancements have been made in the field of machine learning (ML) to address resource management, interference management, autonomy, and decision-making in wireless networks. Traditional ML approaches rely on centralized methods, where data is collected at a central server for training. However, this approach poses a challenge in terms of preserving the data privacy of devices. To address this issue, federated learning (FL) has emerged as an effective solution that allows edge devices to collaboratively train ML models without compromising data privacy. In FL, local datasets are not shared, and the focus is on learning a global model for a specific task involving all devices. However, FL has limitations when it comes to adapting the model to devices with different data distributions. In such cases, meta learning is considered, as it enables the adaptation of learning models to different data distributions using only a few data samples. In this tutorial, we present a comprehensive review of FL, meta learning, and federated meta learning (FedMeta). Unlike other tutorial papers, our objective is to explore how FL, meta learning, and FedMeta methodologies can be designed, optimized, and evolved, and their applications over wireless networks. We also analyze the relationships among these learning algorithms and examine their advantages and disadvantages in real-world applications.
Adaptive Federated Pruning in Hierarchical Wireless Networks
Liu, Xiaonan, Wang, Shiqiang, Deng, Yansha, Nallanathan, Arumugam
Federated Learning (FL) is a promising privacy-preserving distributed learning framework where a server aggregates models updated by multiple devices without accessing their private datasets. Hierarchical FL (HFL), as a device-edge-cloud aggregation hierarchy, can enjoy both the cloud server's access to more datasets and the edge servers' efficient communications with devices. However, the learning latency increases with the HFL network scale due to the increasing number of edge servers and devices with limited local computation capability and communication bandwidth. To address this issue, in this paper, we introduce model pruning for HFL in wireless networks to reduce the neural network scale. We present the convergence analysis of an upper on the l2 norm of gradients for HFL with model pruning, analyze the computation and communication latency of the proposed model pruning scheme, and formulate an optimization problem to maximize the convergence rate under a given latency threshold by jointly optimizing the pruning ratio and wireless resource allocation. By decoupling the optimization problem and using Karush Kuhn Tucker (KKT) conditions, closed-form solutions of pruning ratio and wireless resource allocation are derived. Simulation results show that our proposed HFL with model pruning achieves similar learning accuracy compared with the HFL without model pruning and reduces about 50 percent communication cost.
Efficient Wireless Federated Learning with Partial Model Aggregation
Chen, Zhixiong, Yi, Wenqiang, Nallanathan, Arumugam, Li, Geoffrey Ye
The data heterogeneity across devices and the limited communication resources, e.g., bandwidth and energy, are two of the main bottlenecks for wireless federated learning (FL). To tackle these challenges, we first devise a novel FL framework with partial model aggregation (PMA). This approach aggregates the lower layers of neural networks, responsible for feature extraction, at the parameter server while keeping the upper layers, responsible for complex pattern recognition, at devices for personalization. The proposed PMA-FL is able to address the data heterogeneity and reduce the transmitted information in wireless channels. Then, we derive a convergence bound of the framework under a non-convex loss function setting to reveal the role of unbalanced data size in the learning performance. On this basis, we maximize the scheduled data size to minimize the global loss function through jointly optimize the device scheduling, bandwidth allocation, computation and communication time division policies with the assistance of Lyapunov optimization. Our analysis reveals that the optimal time division is achieved when the communication and computation parts of PMA-FL have the same power. We also develop a bisection method to solve the optimal bandwidth allocation policy and use the set expansion algorithm to address the device scheduling policy. Compared with the benchmark schemes, the proposed PMA-FL improves 3.13\% and 11.8\% accuracy on two typical datasets with heterogeneous data distribution settings, i.e., MINIST and CIFAR-10, respectively. In addition, the proposed joint dynamic device scheduling and resource management approach achieve slightly higher accuracy than the considered benchmarks, but they provide a satisfactory energy and time reduction: 29\% energy or 20\% time reduction on the MNIST; and 25\% energy or 12.5\% time reduction on the CIFAR-10.
Learning based signal detection for MIMO systems with unknown noise statistics
He, Ke, He, Le, Fan, Lisheng, Deng, Yansha, Karagiannidis, George K., Nallanathan, Arumugam
This paper aims to devise a generalized maximum likelihood (ML) estimator to robustly detect signals with unknown noise statistics in multiple-input multiple-output (MIMO) systems. In practice, there is little or even no statistical knowledge on the system noise, which in many cases is non-Gaussian, impulsive and not analyzable. Existing detection methods have mainly focused on specific noise models, which are not robust enough with unknown noise statistics. To tackle this issue, we propose a novel ML detection framework to effectively recover the desired signal. Our framework is a fully probabilistic one that can efficiently approximate the unknown noise distribution through a normalizing flow. Importantly, this framework is driven by an unsupervised learning approach, where only the noise samples are required. To reduce the computational complexity, we further present a low-complexity version of the framework, by utilizing an initial estimation to reduce the search space. Simulation results show that our framework outperforms other existing algorithms in terms of bit error rate (BER) in non-analytical noise environments, while it can reach the ML performance bound in analytical noise environments. The code of this paper is available at https://github.com/skypitcher/manfe.
Green Deep Reinforcement Learning for Radio Resource Management: Architecture, Algorithm Compression and Challenge
Du, Zhiyong, Deng, Yansha, Guo, Weisi, Nallanathan, Arumugam, Wu, Qihui
AI heralds a step-change in the performance and capability of wireless networks and other critical infrastructures. However, it may also cause irreversible environmental damage due to their high energy consumption. Here, we address this challenge in the context of 5G and beyond, where there is a complexity explosion in radio resource management (RRM). On the one hand, deep reinforcement learning (DRL) provides a powerful tool for scalable optimization for high dimensional RRM problems in a dynamic environment. On the other hand, DRL algorithms consume a high amount of energy over time and risk compromising progress made in green radio research. This paper reviews and analyzes how to achieve green DRL for RRM via both architecture and algorithm innovations. Architecturally, a cloud based training and distributed decision-making DRL scheme is proposed, where RRM entities can make lightweight deep local decisions whilst assisted by on-cloud training and updating. On the algorithm level, compression approaches are introduced for both deep neural networks and the underlying Markov Decision Processes, enabling accurate low-dimensional representations of challenges. To scale learning across geographic areas, a spatial transfer learning scheme is proposed to further promote the learning efficiency of distributed DRL entities by exploiting the traffic demand correlations. Together, our proposed architecture and algorithms provide a vision for green and on-demand DRL capability.