Nakatumba-Nabende, Joyce
Building a Luganda Text-to-Speech Model From Crowdsourced Data
Kagumire, Sulaiman, Katumba, Andrew, Nakatumba-Nabende, Joyce, Quinn, John
Text-to-speech (TTS) development for African languages such as Luganda is still limited, primarily due to the scarcity of high-quality, single-speaker recordings essential for training TTS models. Prior work has focused on utilizing the Luganda Common Voice recordings of multiple speakers aged between 20-49. Although the generated speech is intelligible, it is still of lower quality than the model trained on studio-grade recordings. This is due to the insufficient data preprocessing methods applied to improve the quality of the Common Voice recordings. Furthermore, speech convergence is more difficult to achieve due to varying intonations, as well as background noise. In this paper, we show that the quality of Luganda TTS from Common Voice can improve by training on multiple speakers of close intonation in addition to further preprocessing of the training data. Specifically, we selected six female speakers with close intonation determined by subjectively listening and comparing their voice recordings. In addition to trimming out silent portions from the beginning and end of the recordings, we applied a pre-trained speech enhancement model to reduce background noise and enhance audio quality. We also utilized a pre-trained, non-intrusive, self-supervised Mean Opinion Score (MOS) estimation model to filter recordings with an estimated MOS over 3.5, indicating high perceived quality. Subjective MOS evaluations from nine native Luganda speakers demonstrate that our TTS model achieves a significantly better MOS of 3.55 compared to the reported 2.5 MOS of the existing model. Moreover, for a fair comparison, our model trained on six speakers outperforms models trained on a single-speaker (3.13 MOS) or two speakers (3.22 MOS). This showcases the effectiveness of compensating for the lack of data from one speaker with data from multiple speakers of close intonation to improve TTS quality.
MasakhaNER 2.0: Africa-centric Transfer Learning for Named Entity Recognition
Adelani, David Ifeoluwa, Neubig, Graham, Ruder, Sebastian, Rijhwani, Shruti, Beukman, Michael, Palen-Michel, Chester, Lignos, Constantine, Alabi, Jesujoba O., Muhammad, Shamsuddeen H., Nabende, Peter, Dione, Cheikh M. Bamba, Bukula, Andiswa, Mabuya, Rooweither, Dossou, Bonaventure F. P., Sibanda, Blessing, Buzaaba, Happy, Mukiibi, Jonathan, Kalipe, Godson, Mbaye, Derguene, Taylor, Amelia, Kabore, Fatoumata, Emezue, Chris Chinenye, Aremu, Anuoluwapo, Ogayo, Perez, Gitau, Catherine, Munkoh-Buabeng, Edwin, Koagne, Victoire M., Tapo, Allahsera Auguste, Macucwa, Tebogo, Marivate, Vukosi, Mboning, Elvis, Gwadabe, Tajuddeen, Adewumi, Tosin, Ahia, Orevaoghene, Nakatumba-Nabende, Joyce, Mokono, Neo L., Ezeani, Ignatius, Chukwuneke, Chiamaka, Adeyemi, Mofetoluwa, Hacheme, Gilles Q., Abdulmumin, Idris, Ogundepo, Odunayo, Yousuf, Oreen, Ngoli, Tatiana Moteu, Klakow, Dietrich
African languages are spoken by over a billion people, but are underrepresented in NLP research and development. The challenges impeding progress include the limited availability of annotated datasets, as well as a lack of understanding of the settings where current methods are effective. In this paper, we make progress towards solutions for these challenges, focusing on the task of named entity recognition (NER). We create the largest human-annotated NER dataset for 20 African languages, and we study the behavior of state-of-the-art cross-lingual transfer methods in an Africa-centric setting, demonstrating that the choice of source language significantly affects performance. We show that choosing the best transfer language improves zero-shot F1 scores by an average of 14 points across 20 languages compared to using English. Our results highlight the need for benchmark datasets and models that cover typologically-diverse African languages.
MasakhaNER: Named Entity Recognition for African Languages
Adelani, David Ifeoluwa, Abbott, Jade, Neubig, Graham, D'souza, Daniel, Kreutzer, Julia, Lignos, Constantine, Palen-Michel, Chester, Buzaaba, Happy, Rijhwani, Shruti, Ruder, Sebastian, Mayhew, Stephen, Azime, Israel Abebe, Muhammad, Shamsuddeen, Emezue, Chris Chinenye, Nakatumba-Nabende, Joyce, Ogayo, Perez, Aremu, Anuoluwapo, Gitau, Catherine, Mbaye, Derguene, Alabi, Jesujoba, Yimam, Seid Muhie, Gwadabe, Tajuddeen, Ezeani, Ignatius, Niyongabo, Rubungo Andre, Mukiibi, Jonathan, Otiende, Verrah, Orife, Iroro, David, Davis, Ngom, Samba, Adewumi, Tosin, Rayson, Paul, Adeyemi, Mofetoluwa, Muriuki, Gerald, Anebi, Emmanuel, Chukwuneke, Chiamaka, Odu, Nkiruka, Wairagala, Eric Peter, Oyerinde, Samuel, Siro, Clemencia, Bateesa, Tobius Saul, Oloyede, Temilola, Wambui, Yvonne, Akinode, Victor, Nabagereka, Deborah, Katusiime, Maurice, Awokoya, Ayodele, MBOUP, Mouhamadane, Gebreyohannes, Dibora, Tilaye, Henok, Nwaike, Kelechi, Wolde, Degaga, Faye, Abdoulaye, Sibanda, Blessing, Ahia, Orevaoghene, Dossou, Bonaventure F. P., Ogueji, Kelechi, DIOP, Thierno Ibrahima, Diallo, Abdoulaye, Akinfaderin, Adewale, Marengereke, Tendai, Osei, Salomey
We take a step towards addressing the under-representation of the African continent in NLP research by creating the first large publicly available high-quality dataset for named entity recognition (NER) in ten African languages, bringing together a variety of stakeholders. We detail characteristics of the languages to help researchers understand the challenges that these languages pose for NER. We analyze our datasets and conduct an extensive empirical evaluation of state-of-the-art methods across both supervised and transfer learning settings. We release the data, code, and models in order to inspire future research on African NLP.