Goto

Collaborating Authors

 Nagy, Gabor


Forecasting Framework for Open Access Time Series in Energy

arXiv.org Machine Learning

In this paper we propose a framework for automated forecasting of energy-related time series using open access data from European Network of Transmission System Operators for Electricity (ENTSO-E). The framework provides forecasts for various European countries using publicly available historical data only. Our solution was benchmarked using the actual load data and the country provided estimates (where available). We conclude that the proposed system can produce timely forecasts with comparable prediction accuracy in a number of cases. We also investigate the probabilistic case of forecasting - that is, providing a probability distribution rather than a simple point forecast - and incorporate it into a web based API that provides quick and easy access to reliable forecasts.


Portfolio optimization using local linear regression ensembles in RapidMiner

arXiv.org Machine Learning

In this paper we implement a Local Linear Regression Ensemble Committee (LOLREC) to predict 1-day-ahead returns of 453 assets form the S&P500. The estimates and the historical returns of the committees are used to compute the weights of the portfolio from the 453 stock. The proposed method outperforms benchmark portfolio selection strategies that optimize the growth rate of the capital. We investigate the effect of algorithm parameter m: the number of selected stocks on achieved average annual yields. Results suggest the algorithm's practical usefulness in everyday trading.


GEFCOM 2014 - Probabilistic Electricity Price Forecasting

arXiv.org Machine Learning

Energy price forecasting is a relevant yet hard task in the field of multi-step time series forecasting. In this paper we compare a well-known and established method, ARMA with exogenous variables with a relatively new technique Gradient Boosting Regression. The method was tested on data from Global Energy Forecasting Competition 2014 with a year long rolling window forecast. The results from the experiment reveal that a multi-model approach is significantly better performing in terms of error metrics. Gradient Boosting can deal with seasonality and auto-correlation out-of-the box and achieve lower rate of normalized mean absolute error on real-world data.