Nagaraj, Sriram
Physics Informed Machine Learning (PIML) methods for estimating the remaining useful lifetime (RUL) of aircraft engines
Nagaraj, Sriram, Hickok, Truman
This paper is aimed at using the newly developing field of physics informed machine learning (PIML) to develop models for predicting the remaining useful lifetime (RUL) aircraft engines. We consider the well-known benchmark NASA Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) data as the main data for this paper, which consists of sensor outputs in a variety of different operating modes. C-MAPSS is a well-studied dataset with much existing work in the literature that address RUL prediction with classical and deep learning methods. In the absence of published empirical physical laws governing the C-MAPSS data, our approach first uses stochastic methods to estimate the governing physics models from the noisy time series data. In our approach, we model the various sensor readings as being governed by stochastic differential equations, and we estimate the corresponding transition density mean and variance functions of the underlying processes. We then augment LSTM (long-short term memory) models with the learned mean and variance functions during training and inferencing. Our PIML based approach is different from previous methods, and we use the data to first learn the physics. Our results indicate that PIML discovery and solutions methods are well suited for this problem and outperform previous data-only deep learning methods for this data set and task. Moreover, the framework developed herein is flexible, and can be adapted to other situations (other sensor modalities or combined multi-physics environments), including cases where the underlying physics is only partially observed or known.
BrowNNe: Brownian Nonlocal Neurons & Activation Functions
Nagaraj, Sriram, Hickok, Truman
It is generally thought that the use of stochastic activation functions in deep learning architectures yield models with superior generalization abilities. However, a sufficiently rigorous statement and theoretical proof of this heuristic is lacking in the literature. In this paper, we provide several novel contributions to the literature in this regard. Defining a new notion of nonlocal directional derivative, we analyze its theoretical properties (existence and convergence). Second, using a probabilistic reformulation, we show that nonlocal derivatives are epsilon-sub gradients, and derive sample complexity results for convergence of stochastic gradient descent-like methods using nonlocal derivatives. Finally, using our analysis of the nonlocal gradient of Holder continuous functions, we observe that sample paths of Brownian motion admit nonlocal directional derivatives, and the nonlocal derivatives of Brownian motion are seen to be Gaussian processes with computable mean and standard deviation. Using the theory of nonlocal directional derivatives, we solve a highly nondifferentiable and nonconvex model problem of parameter estimation on image articulation manifolds. Using Brownian motion infused ReLU activation functions with the nonlocal gradient in place of the usual gradient during backpropagation, we also perform experiments on multiple well-studied deep learning architectures. Our experiments indicate the superior generalization capabilities of Brownian neural activation functions in low-training data regimes, where the use of stochastic neurons beats the deterministic ReLU counterpart.