Naesseth, Christian Andersson
Variational Flow Matching for Graph Generation
Eijkelboom, Floor, Bartosh, Grigory, Naesseth, Christian Andersson, Welling, Max, van de Meent, Jan-Willem
We present a formulation of flow matching as variational inference, which we refer to as variational flow matching (VFM). Based on this formulation we develop CatFlow, a flow matching method for categorical data. CatFlow is easy to implement, computationally efficient, and achieves strong results on graph generation tasks. In VFM, the objective is to approximate the posterior probability path, which is a distribution over possible end points of a trajectory. We show that VFM admits both the CatFlow objective and the original flow matching objective as special cases. We also relate VFM to score-based models, in which the dynamics are stochastic rather than deterministic, and derive a bound on the model likelihood based on a reweighted VFM objective. We evaluate CatFlow on one abstract graph generation task and two molecular generation tasks. In all cases, CatFlow exceeds or matches performance of the current state-of-the-art models.
Sequential Monte Carlo for Graphical Models
Naesseth, Christian Andersson, Lindsten, Fredrik, Schön, Thomas B.
We propose a new framework for how to use sequential Monte Carlo (SMC) algorithms for inference in probabilistic graphical models (PGM). Via a sequential decomposition of the PGM we find a sequence of auxiliary distributions defined on a monotonically increasing sequence of probability spaces. By targeting these auxiliary distributions using SMC we are able to approximate the full joint distribution defined by the PGM. One of the key merits of the SMC sampler is that it provides an unbiased estimate of the partition function of the model. We also show how it can be used within a particle Markov chain Monte Carlo framework in order to construct high-dimensional block-sampling algorithms for general PGMs.