Naeem, Muhammad Ferjad
SigLIP 2: Multilingual Vision-Language Encoders with Improved Semantic Understanding, Localization, and Dense Features
Tschannen, Michael, Gritsenko, Alexey, Wang, Xiao, Naeem, Muhammad Ferjad, Alabdulmohsin, Ibrahim, Parthasarathy, Nikhil, Evans, Talfan, Beyer, Lucas, Xia, Ye, Mustafa, Basil, Hénaff, Olivier, Harmsen, Jeremiah, Steiner, Andreas, Zhai, Xiaohua
We introduce SigLIP 2, a family of new multilingual vision-language encoders that build on the success of the original SigLIP. In this second iteration, we extend the original image-text training objective with several prior, independently developed techniques into a unified recipe -- this includes captioning-based pretraining, self-supervised losses (self-distillation, masked prediction) and online data curation. With these changes, SigLIP 2 models outperform their SigLIP counterparts at all model scales in core capabilities, including zero-shot classification, image-text retrieval, and transfer performance when extracting visual representations for Vision-Language Models (VLMs). Furthermore, the new training recipe leads to significant improvements on localization and dense prediction tasks. We also train variants which support multiple resolutions and preserve the input's native aspect ratio. Finally, we train on a more diverse data-mixture that includes de-biasing techniques, leading to much better multilingual understanding and improved fairness. To allow users to trade off inference cost with performance, we release model checkpoints at four sizes: ViT-B (86M), L (303M), So400m (400M), and g (1B).
Active Data Curation Effectively Distills Large-Scale Multimodal Models
Udandarao, Vishaal, Parthasarathy, Nikhil, Naeem, Muhammad Ferjad, Evans, Talfan, Albanie, Samuel, Tombari, Federico, Xian, Yongqin, Tonioni, Alessio, Hénaff, Olivier J.
Knowledge distillation (KD) is the de facto standard for compressing large-scale models into smaller ones. Prior works have explored ever more complex KD strategies involving different objective functions, teacher-ensembles, and weight inheritance. In this work we explore an alternative, yet simple approach -- active data curation as effective distillation for contrastive multimodal pretraining. Our simple online batch selection method, ACID, outperforms strong KD baselines across various model-, data- and compute-configurations. Further, we find such an active data curation strategy to in fact be complementary to standard KD, and can be effectively combined to train highly performant inference-efficient models. Our simple and scalable pretraining framework, ACED, achieves state-of-the-art results across 27 zero-shot classification and retrieval tasks with upto 11% less inference FLOPs. We further demonstrate that our ACED models yield strong vision-encoders for training generative multimodal models in the LiT-Decoder setting, outperforming larger vision encoders for image-captioning and visual question-answering tasks.
TokenFormer: Rethinking Transformer Scaling with Tokenized Model Parameters
Wang, Haiyang, Fan, Yue, Naeem, Muhammad Ferjad, Xian, Yongqin, Lenssen, Jan Eric, Wang, Liwei, Tombari, Federico, Schiele, Bernt
Transformers have become the predominant architecture in foundation models due to their excellent performance across various domains. However, the substantial cost of scaling these models remains a significant concern. This problem arises primarily from their dependence on a fixed number of parameters within linear projections. When architectural modifications (e.g., channel dimensions) are introduced, the entire model typically requires retraining from scratch. As model sizes continue growing, this strategy results in increasingly high computational costs and becomes unsustainable. To overcome this problem, we introduce Tokenformer, a natively scalable architecture that leverages the attention mechanism not only for computations among input tokens but also for interactions between tokens and model parameters, thereby enhancing architectural flexibility. By treating model parameters as tokens, we replace all the linear projections in Transformers with our token-parameter attention layer, where input tokens act as queries and model parameters as keys and values. This reformulation allows for progressive and efficient scaling without necessitating retraining from scratch. Our model scales from 124M to 1.4B parameters by incrementally adding new key-value parameter pairs, achieving performance comparable to Transformers trained from scratch while greatly reducing training costs.
Data Augmentation with Manifold Exploring Geometric Transformations for Increased Performance and Robustness
Paschali, Magdalini, Simson, Walter, Roy, Abhijit Guha, Naeem, Muhammad Ferjad, Göbl, Rüdiger, Wachinger, Christian, Navab, Nassir
In this paper we propose a novel augmentation technique that improves not only the performance of deep neural networks on clean test data, but also significantly increases their robustness to random transformations, both affine and projective. Inspired by ManiFool, the augmentation is performed by a line-search manifold-exploration method that learns affine geometric transformations that lead to the misclassification on an image, while ensuring that it remains on the same manifold as the training data. This augmentation method populates any training dataset with images that lie on the border of the manifolds between two-classes and maximizes the variance the network is exposed to during training. Our method was thoroughly evaluated on the challenging tasks of fine-grained skin lesion classification from limited data, and breast tumor classification of mammograms. Compared with traditional augmentation methods, and with images synthesized by Generative Adversarial Networks our method not only achieves state-of-the-art performance but also significantly improves the network's robustness.