Goto

Collaborating Authors

 Nachmani, Eliya


Deep Active Speech Cancellation with Multi-Band Mamba Network

arXiv.org Artificial Intelligence

We present a novel deep learning network for Active Speech Cancellation (ASC), advancing beyond Active Noise Cancellation (ANC) methods by effectively canceling both noise and speech signals. The proposed Multi-Band Mamba architecture segments input audio into distinct frequency bands, enabling precise anti-signal generation and improved phase alignment across frequencies. Additionally, we introduce an optimization-driven loss function that provides near-optimal supervisory signals for anti-signal generation. Experimental results demonstrate substantial performance gains, achieving up to 7.2dB improvement in ANC scenarios and 6.2dB in ASC, significantly outperforming existing methods. Audio samples are available at https://mishalydev.github.io/DeepASC-Demo


Zero-Shot Mono-to-Binaural Speech Synthesis

arXiv.org Artificial Intelligence

We present ZeroBAS, a neural method to synthesize binaural audio from monaural audio recordings and positional information without training on any binaural data. To our knowledge, this is the first published zero-shot neural approach to mono-to-binaural audio synthesis. Specifically, we show that a parameter-free geometric time warping and amplitude scaling based on source location suffices to get an initial binaural synthesis that can be refined by iteratively applying a pretrained denoising vocoder. Furthermore, we find this leads to generalization across room conditions, which we measure by introducing a new dataset, TUT Mono-to-Binaural, to evaluate state-of-the-art monaural-to-binaural synthesis methods on unseen conditions. Our zero-shot method is perceptually on-par with the performance of supervised methods on the standard mono-to-binaural dataset, and even surpasses them on our out-of-distribution TUT Mono-to-Binaural dataset. Our results highlight the potential of pretrained generative audio models and zero-shot learning to unlock robust binaural audio synthesis.


SimulTron: On-Device Simultaneous Speech to Speech Translation

arXiv.org Artificial Intelligence

Simultaneous speech-to-speech translation (S2ST) holds the promise of breaking down communication barriers and enabling fluid conversations across languages. However, achieving accurate, real-time translation through mobile devices remains a major challenge. We introduce SimulTron, a novel S2ST architecture designed to tackle this task. SimulTron is a lightweight direct S2ST model that uses the strengths of the Translatotron framework while incorporating key modifications for streaming operation, and an adjustable fixed delay. Our experiments show that SimulTron surpasses Translatotron 2 in offline evaluations. Furthermore, real-time evaluations reveal that SimulTron improves upon the performance achieved by Translatotron 1. Additionally, SimulTron achieves superior BLEU scores and latency compared to previous real-time S2ST method on the MuST-C dataset. Significantly, we have successfully deployed SimulTron on a Pixel 7 Pro device, show its potential for simultaneous S2ST on-device.


Spoken Question Answering and Speech Continuation Using Spectrogram-Powered LLM

arXiv.org Artificial Intelligence

We present a novel approach to adapting pre-trained large language models (LLMs) to perform question answering (QA) and speech continuation. By endowing the LLM with a pre-trained speech encoder, our model becomes able to take speech inputs and generate speech outputs. The entire system is trained end-to-end and operates directly on spectrograms, simplifying our architecture. Key to our approach is a training objective that jointly supervises speech recognition, text continuation, and speech synthesis using only paired speech-text pairs, enabling a `cross-modal' chain-of-thought within a single decoding pass. Our method surpasses existing spoken language models in speaker preservation and semantic coherence. Furthermore, the proposed model improves upon direct initialization in retaining the knowledge of the original LLM as demonstrated through spoken QA datasets. Audio samples can be found at https://michelleramanovich.github.io/spectron/spectron


Separate And Diffuse: Using a Pretrained Diffusion Model for Improving Source Separation

arXiv.org Artificial Intelligence

The problem of speech separation, also known as the cocktail party problem, refers to the task of isolating a single speech signal from a mixture of speech signals. Previous work on source separation derived an upper bound for the source separation task in the domain of human speech. This bound is derived for deterministic models. Recent advancements in generative models challenge this bound. We show how the upper bound can be generalized to the case of random generative models. Applying a diffusion model Vocoder that was pretrained to model single-speaker voices on the output of a deterministic separation model leads to state-of-the-art separation results. It is shown that this requires one to combine the output of the separation model with that of the diffusion model. In our method, a linear combination is performed, in the frequency domain, using weights that are inferred by a learned model. We show state-of-the-art results on 2, 3, 5, 10, and 20 speakers on multiple benchmarks. In particular, for two speakers, our method is able to surpass what was previously considered the upper performance bound.


Decision S4: Efficient Sequence-Based RL via State Spaces Layers

arXiv.org Artificial Intelligence

Recently, sequence learning methods have been applied to the problem of off-policy Reinforcement Learning, including the seminal work on Decision Transformers, which employs transformers for this task. Since transformers are parameter-heavy, cannot benefit from history longer than a fixed window size, and are not computed using recurrence, we set out to investigate the suitability of the S4 family of models, which are based on state-space layers and have been shown to outperform transformers, especially in modeling long-range dependencies. In this work we present two main algorithms: (i) an off-policy training procedure that works with trajectories, while still maintaining the training efficiency of the S4 model. Our results indicate that our method outperforms multiple variants of decision transformers, as well as the other baseline methods on most tasks, while reducing the latency, number of parameters, and training time by several orders of magnitude, making our approach more suitable for real-world RL. Robots are naturally described as being in an observable state, having a multi-dimensional action space and striving to achieve a measurable goal. The complexity of these three elements, and the often non-differentiable links between them, such as the shift between the states given the action and the shift between the states and the reward (with the latter computed based on additional entities), make the use of Reinforcement Learning (RL) natural, see also (Kober et al., 2013; Ibarz et al., 2021). Off-policy RL has preferable sample complexity and is widely used in robotics research, e.g., (Haarnoja et al., 2018; Gu et al., 2017). However, with the advent of accessible physical simulations for generating data, learning complex tasks without a successful sample model is readily approached by on-policy methods Siekmann et al. (2021) and the same holds for the task of adversarial imitation learning Peng et al. (2021; 2022). The decision transformer of Chen et al. (2021) is a sequence-based off-policy RL method that considers sequences of tuples of the form (reward, state, action). Using the auto-regressive capability of transformers, it generates the next action given the desired reward and the current state. The major disadvantages of the decision transformer are the size of the architecture, which is a known limitation in these models, the inference runtime, which stems from the inability to compute the transformer recursively, and the fixed window size, which eliminates long-range dependencies. In this work, we propose a novel, sequence-based RL method that is far more efficient than the decision transformer and more suitable for capturing long-range effects. The method is based on the S4 sequence model, which was designed by Gu et al. (2021a). These authors contributed equally to this work.


Translatotron 3: Speech to Speech Translation with Monolingual Data

arXiv.org Artificial Intelligence

This paper presents Translatotron 3, a novel approach to train a direct speech-to-speech translation model from monolingual speech-text datasets only in a fully unsupervised manner. Translatotron 3 combines masked autoencoder, unsupervised embedding mapping, and back-translation to achieve this goal. Experimental results in speech-to-speech translation tasks between Spanish and English show that Translatotron 3 outperforms a baseline cascade system, reporting 18.14 BLEU points improvement on the synthesized Unpaired-Conversational dataset. In contrast to supervised approaches that necessitate real paired data, which is unavailable, or specialized modeling to replicate para-/non-linguistic information, Translatotron 3 showcases its capability to retain para-/non-linguistic such as pauses, speaking rates, and speaker identity. Audio samples can be found in our website http://google-research.github.io/lingvo-lab/translatotron3


SepIt: Approaching a Single Channel Speech Separation Bound

arXiv.org Artificial Intelligence

We present an upper bound for the Single Channel Speech Separation task, which is based on an assumption regarding the nature of short segments of speech. Using the bound, we are able to show that while the recent methods have made significant progress for a few speakers, there is room for improvement for five and ten speakers. We then introduce a Deep neural network, SepIt, that iteratively improves the different speakers' estimation. At test time, SpeIt has a varying number of iterations per test sample, based on a mutual information criterion that arises from our analysis. In an extensive set of experiments, SepIt outperforms the state-of-the-art neural networks for 2, 3, 5, and 10 speakers.


A-Muze-Net: Music Generation by Composing the Harmony based on the Generated Melody

arXiv.org Artificial Intelligence

We present a method for the generation of Midi files of piano music. The method models the right and left hands using two networks, where the left hand is conditioned on the right hand. This way, the melody is generated before the harmony. The Midi is represented in a way that is invariant to the musical scale, and the melody is represented, for the purpose of conditioning the harmony, by the content of each bar, viewed as a chord. Finally, notes are added randomly, based on this chord representation, in order to enrich the generated audio. Our experiments show a significant improvement over the state of the art for training on such datasets, and demonstrate the contribution of each of the novel components.


Many-Speakers Single Channel Speech Separation with Optimal Permutation Training

arXiv.org Artificial Intelligence

Single channel speech separation has experienced great progress in the last few years. However, training neural speech separation for a large number of speakers (e.g., more than 10 speakers) is out of reach for the current methods, which rely on the Permutation Invariant Loss (PIT). In this work, we present a permutation invariant training that employs the Hungarian algorithm in order to train with an $O(C^3)$ time complexity, where $C$ is the number of speakers, in comparison to $O(C!)$ of PIT based methods. Furthermore, we present a modified architecture that can handle the increased number of speakers. Our approach separates up to $20$ speakers and improves the previous results for large $C$ by a wide margin.