Naccache, David
Co-Embedding: Discovering Communities on Bipartite Graphs through Projection
Candel, Gaëlle, Naccache, David
Many datasets take the form of a bipartite graph where two types of nodes are connected by relationships, like the movies watched by a user or the tags associated with a file. The partitioning of the bipartite graph could be used to fasten recommender systems, or reduce the information retrieval system's index size, by identifying groups of items with similar properties. This type of graph is often processed by algorithms using the Vector Space Model representation, where a binary vector represents an item with 0 and 1. The main problem with this representation is the dimension relatedness, like words' synonymity, which is not considered. This article proposes a co-clustering algorithm using items projection, allowing the measurement of features similarity. We evaluated our algorithm on a cluster retrieval task. Over various datasets, our algorithm produced well balanced clusters with coherent items in, leading to high retrieval scores on this task.
Optimal Covid-19 Pool Testing with a priori Information
Beunardeau, Marc, Brier, Éric, Cartier, Noémie, Connolly, Aisling, Courant, Nathanaël, Géraud-Stewart, Rémi, Naccache, David, Yifrach-Stav, Ofer
As humanity struggles to contain the global Covid-19 infection, prophylactic actions are grandly slowed down by the shortage of testing kits. Governments have taken several measures to work around this shortage: the FDA has become more liberal on the approval of Covid-19 tests in the US. In the UK emergency measures allowed to increase the daily number of locally produced test kits to 100,000. China has recently launched a massive test manufacturing program. However, all those efforts are very insufficient and many poor countries are still under threat. A popular method for reducing the number of tests consists in pooling samples, i.e. mixing patient samples and testing the mixed samples once. If all the samples are negative, pooling succeeds at a unitary cost. However, if a single sample is positive, failure does not indicate which patient is infected. This paper describes how to optimally detect infected patients in pools, i.e. using a minimal number of tests to precisely identify them, given the a priori probabilities that each of the patients is healthy. Those probabilities can be estimated using questionnaires, supervised machine learning or clinical examinations. The resulting algorithms, which can be interpreted as informed divide-and-conquer strategies, are non-intuitive and quite surprising. They are patent-free. Co-authors are listed in alphabetical order.