Goto

Collaborating Authors

 Naccache, David


FedPID: An Aggregation Method for Federated Learning

arXiv.org Artificial Intelligence

This paper presents FedPID, our submission to the Federated Tumor Segmentation Challenge 2024 (FETS24). Inspired by Fed-CostWAvg and FedPIDAvg, our winning contributions to FETS21 and FETS2022, we propose an improved aggregation strategy for federated and collaborative learning. FedCostWAvg is a method that averages results by considering both the number of training samples in each group and how much the cost function decreased in the last round of training. This is similar to how the derivative part of a PID controller works. In FedPIDAvg, we also included the integral part that was missing. Another challenge we faced were vastly differing dataset sizes at each center. We solved this by assuming the sizes follow a Poisson distribution and adjusting the training iterations for each center accordingly. Essentially, this part of the method controls that outliers that require too much training time are less frequently used. Based on these contributions we now adapted FedPIDAvg by changing how the integral part is computed.


CNN Explainability with Multivector Tucker Saliency Maps for Self-Supervised Models

arXiv.org Artificial Intelligence

Interpreting the decisions of Convolutional Neural Networks (CNNs) is essential for understanding their behavior, yet explainability remains a significant challenge, particularly for self-supervised models. Most existing methods for generating saliency maps rely on ground truth labels, restricting their use to supervised tasks. EigenCAM is the only notable label-independent alternative, leveraging Singular Value Decomposition to generate saliency maps applicable across CNN models, but it does not fully exploit the tensorial structure of feature maps. In this work, we introduce the Tucker Saliency Map (TSM) method, which applies Tucker tensor decomposition to better capture the inherent structure of feature maps, producing more accurate singular vectors and values. These are used to generate high-fidelity saliency maps, effectively highlighting objects of interest in the input. We further extend EigenCAM and TSM into multivector variants--Multivec-EigenCAM and Multivector Tucker Saliency Maps (MTSM)--which utilize all singular vectors and values, further improving saliency map quality. Quantitative evaluations on supervised classification models demonstrate that TSM, Multivec-EigenCAM, and MTSM achieve competitive performance with label-dependent methods. Moreover, TSM enhances explainability by approximately 50% over EigenCAM for both supervised and self-supervised models.


Sampling From Autoencoders' Latent Space via Quantization And Probability Mass Function Concepts

arXiv.org Artificial Intelligence

In this study, we focus on sampling from the latent space of generative models built upon autoencoders so as the reconstructed samples are lifelike images. To do to, we introduce a novel post-training sampling algorithm rooted in the concept of probability mass functions, coupled with a quantization process. Our proposed algorithm establishes a vicinity around each latent vector from the input data and then proceeds to draw samples from these defined neighborhoods. This strategic approach ensures that the sampled latent vectors predominantly inhabit high-probability regions, which, in turn, can be effectively transformed into authentic real-world images. A noteworthy point of comparison for our sampling algorithm is the sampling technique based on Gaussian mixture models (GMM), owing to its inherent capability to represent clusters. Remarkably, we manage to improve the time complexity from the previous $\mathcal{O}(n\times d \times k \times i)$ associated with GMM sampling to a much more streamlined $\mathcal{O}(n\times d)$, thereby resulting in substantial speedup during runtime. Moreover, our experimental results, gauged through the Fr\'echet inception distance (FID) for image generation, underscore the superior performance of our sampling algorithm across a diverse range of models and datasets. On the MNIST benchmark dataset, our approach outperforms GMM sampling by yielding a noteworthy improvement of up to $0.89$ in FID value. Furthermore, when it comes to generating images of faces and ocular images, our approach showcases substantial enhancements with FID improvements of $1.69$ and $0.87$ respectively, as compared to GMM sampling, as evidenced on the CelebA and MOBIUS datasets. Lastly, we substantiate our methodology's efficacy in estimating latent space distributions in contrast to GMM sampling, particularly through the lens of the Wasserstein distance.


Genealogical Population-Based Training for Hyperparameter Optimization

arXiv.org Artificial Intelligence

HyperParameter Optimization (HPO) aims at finding the best HyperParameters (HPs) of learning models, such as neural networks, in the fastest and most efficient way possible. Most recent HPO algorithms try to optimize HPs regardless of the model that obtained them, assuming that for different models, same HPs will produce very similar results. We break free from this paradigm and propose a new take on preexisting methods that we called Genealogical Population Based Training (GPBT). GPBT, via the shared histories of "genealogically"-related models, exploit the coupling of HPs and models in an efficient way. We experimentally demonstrate that our method cuts down by 2 to 3 times the computational cost required, generally allows a 1% accuracy improvement on computer vision tasks, and reduces the variance of the results by an order of magnitude, compared to the current algorithms. Our method is search-algorithm agnostic so that the inner search routine can be any search algorithm like TPE, GP, CMA or random search.


Simplex Autoencoders

arXiv.org Artificial Intelligence

Synthetic data generation is increasingly important due to privacy concerns. While Autoencoder-based approaches have been widely used for this purpose, sampling from their latent spaces can be challenging. Mixture models are currently the most efficient way to sample from these spaces. In this work, we propose a new approach that models the latent space of an Autoencoder as a simplex, allowing for a novel heuristic for determining the number of components in the mixture model. This heuristic is independent of the number of classes and produces comparable results. We also introduce a sampling method based on probability mass functions, taking advantage of the compactness of the latent space. We evaluate our approaches on a synthetic dataset and demonstrate their performance on three benchmark datasets: MNIST, CIFAR-10, and Celeba. Our approach achieves an image generation FID of 4.29, 13.55, and 11.90 on the MNIST, CIFAR-10, and Celeba datasets, respectively. The best AE FID results to date on those datasets are respectively 6.3, 85.3 and 35.6 we hence substantially improve those figures (the lower is the FID the better). However, AEs are not the best performing algorithms on the concerned datasets and all FID records are currently held by GANs. While we do not perform better than GANs on CIFAR and Celeba we do manage to squeeze-out a non-negligible improvement (of 0.21) over the current GAN-held record for the MNIST dataset.


Pattern Recognition Experiments on Mathematical Expressions

arXiv.org Artificial Intelligence

We provide the results of pattern recognition experiments on mathematical expressions. We give a few examples of conjectured results. None of which was thoroughly checked for novelty. We did not attempt to prove all the relations found and focused on their generation.


Federated Learning Aggregation: New Robust Algorithms with Guarantees

arXiv.org Artificial Intelligence

Federated Learning has been recently proposed for distributed model training at the edge. The principle of this approach is to aggregate models learned on distributed clients to obtain a new more general "average" model (FedAvg). The resulting model is then redistributed to clients for further training. To date, the most popular federated learning algorithm uses coordinate-wise averaging of the model parameters for aggregation. In this paper, we carry out a complete general mathematical convergence analysis to evaluate aggregation strategies in a federated learning framework. From this, we derive novel aggregation algorithms which are able to modify their model architecture by differentiating client contributions according to the value of their losses. Moreover, we go beyond the assumptions introduced in theory, by evaluating the performance of these strategies and by comparing them with the one of FedAvg in classification tasks in both the IID and the Non-IID framework without additional hypothesis.


Noise-Resilient Ensemble Learning using Evidence Accumulation Clustering

arXiv.org Artificial Intelligence

Ensemble Learning methods combine multiple algorithms performing the same task to build a group with superior quality. These systems are well adapted to the distributed setup, where each peer or machine of the network hosts one algorithm and communicate its results to its peers. Ensemble learning methods are naturally resilient to the absence of several peers thanks to the ensemble redundancy. However, the network can be corrupted, altering the prediction accuracy of a peer, which has a deleterious effect on the ensemble quality. In this paper, we propose a noise-resilient ensemble classification method, which helps to improve accuracy and correct random errors. The approach is inspired by Evidence Accumulation Clustering , adapted to classification ensembles. We compared it to the naive voter model over four multi-class datasets. Our model showed a greater resilience, allowing us to recover prediction under a very high noise level. In addition as the method is based on the evidence accumulation clustering, our method is highly flexible as it can combines classifiers with different label definitions.


Index $t$-SNE: Tracking Dynamics of High-Dimensional Datasets with Coherent Embeddings

arXiv.org Artificial Intelligence

$t$-SNE is an embedding method that the data science community has widely Two interesting characteristics of t-SNE are the structure preservation property and the answer to the crowding problem, where all neighbors in high dimensional space cannot be represented correctly in low dimensional space. $t$-SNE preserves the local neighborhood, and similar items are nicely spaced by adjusting to the local density. These two characteristics produce a meaningful representation, where the cluster area is proportional to its size in number, and relationships between clusters are materialized by closeness on the embedding. This algorithm is non-parametric, therefore two initializations of the algorithm would lead to two different embedding. In a forensic approach, analysts would like to compare two or more datasets using their embedding. An approach would be to learn a parametric model over an embedding built with a subset of data. While this approach is highly scalable, points could be mapped at the same exact position, making them indistinguishable. This type of model would be unable to adapt to new outliers nor concept drift. This paper presents a methodology to reuse an embedding to create a new one, where cluster positions are preserved. The optimization process minimizes two costs, one relative to the embedding shape and the second relative to the support embedding' match. The proposed algorithm has the same complexity than the original $t$-SNE to embed new items, and a lower one when considering the embedding of a dataset sliced into sub-pieces. The method showed promising results on a real-world dataset, allowing to observe the birth, evolution and death of clusters. The proposed approach facilitates identifying significant trends and changes, which empowers the monitoring high dimensional datasets' dynamics.


Generating Local Maps of Science using Deep Bibliographic Coupling

arXiv.org Artificial Intelligence

Bibliographic and co-citation coupling are two analytical methods widely used to measure the degree of similarity between scientific papers. These approaches are intuitive, easy to put into practice, and computationally cheap. Moreover, they have been used to generate a map of science, allowing visualizing research field interactions. Nonetheless, these methods do not work unless two papers share a standard reference, limiting the two papers usability with no direct connection. In this work, we propose to extend bibliographic coupling to the deep neighborhood, by using graph diffusion methods. This method allows defining similarity between any two papers, making it possible to generate a local map of science, highlighting field organization.