Naacke, Hubert
ANTM: An Aligned Neural Topic Model for Exploring Evolving Topics
Rahimi, Hamed, Naacke, Hubert, Constantin, Camelia, Amann, Bernd
This paper presents an algorithmic family of dynamic topic models called Aligned Neural Topic Models (ANTM), which combine novel data mining algorithms to provide a modular framework for discovering evolving topics. ANTM maintains the temporal continuity of evolving topics by extracting time-aware features from documents using advanced pre-trained Large Language Models (LLMs) and employing an overlapping sliding window algorithm for sequential document clustering. This overlapping sliding window algorithm identifies a different number of topics within each time frame and aligns semantically similar document clusters across time periods. This process captures emerging and fading trends across different periods and allows for a more interpretable representation of evolving topics. Experiments on four distinct datasets show that ANTM outperforms probabilistic dynamic topic models in terms of topic coherence and diversity metrics. Moreover, it improves the scalability and flexibility of dynamic topic models by being accessible and adaptable to different types of algorithms. Additionally, a Python package is developed for researchers and scientists who wish to study the trends and evolving patterns of topics in large-scale textual data.
ATEM: A Topic Evolution Model for the Detection of Emerging Topics in Scientific Archives
Rahimi, Hamed, Naacke, Hubert, Constantin, Camelia, Amann, Bernd
This paper presents ATEM, a novel framework for studying topic evolution in scientific archives. ATEM is based on dynamic topic modeling and dynamic graph embedding techniques that explore the dynamics of content and citations of documents within a scientific corpus. ATEM explores a new notion of contextual emergence for the discovery of emerging interdisciplinary research topics based on the dynamics of citation links in topic clusters. Our experiments show that ATEM can efficiently detect emerging cross-disciplinary topics within the DBLP archive of over five million computer science articles.
Contextualized Topic Coherence Metrics
Rahimi, Hamed, Hoover, Jacob Louis, Mimno, David, Naacke, Hubert, Constantin, Camelia, Amann, Bernd
The recent explosion in work on neural topic modeling has been criticized for optimizing automated topic evaluation metrics at the expense of actual meaningful topic identification. But human annotation remains expensive and time-consuming. We propose LLM-based methods inspired by standard human topic evaluations, in a family of metrics called Contextualized Topic Coherence (CTC). We evaluate both a fully automated version as well as a semi-automated CTC that allows human-centered evaluation of coherence while maintaining the efficiency of automated methods. We evaluate CTC relative to five other metrics on six topic models and find that it outperforms automated topic coherence methods, works well on short documents, and is not susceptible to meaningless but high-scoring topics.
BigSR: an empirical study of real-time expressive RDF stream reasoning on modern Big Data platforms
Ren, Xiangnan, Curé, Olivier, Naacke, Hubert, Xiao, Guohui
The trade-off between language expressiveness and system scalability (E&S) is a well-known problem in RDF stream reasoning. Higher expressiveness supports more complex reasoning logic, however, it may also hinder system scalability. Current research mainly focuses on logical frameworks suitable for stream reasoning as well as the implementation and the evaluation of prototype systems. These systems are normally developed in a centralized setting which suffer from inherent limited scalability, while an in-depth study of applying distributed solutions to cover E&S is still missing. In this paper, we aim to explore the feasibility of applying modern distributed computing frameworks to meet E&S all together. To do so, we first propose BigSR, a technical demonstrator that supports a positive fragment of the LARS framework. For the sake of generality and to cover a wide variety of use cases, BigSR relies on the two main execution models adopted by major distributed execution frameworks: Bulk Synchronous Processing (BSP) and Record-at-A-Time (RAT). Accordingly, we implement BigSR on top of Apache Spark Streaming (BSP model) and Apache Flink (RAT model). In order to conclude on the impacts of BSP and RAT on E&S, we analyze the ability of the two models to support distributed stream reasoning and identify several types of use cases characterized by their levels of support. This classification allows for quantifying the E&S trade-off by assessing the scalability of each type of use case \wrt its level of expressiveness. Then, we conduct a series of experiments with 15 queries from 4 different datasets. Our experiments show that BigSR over both BSP and RAT generally scales up to high throughput beyond million-triples per second (with or without recursion), and RAT attains sub-millisecond delay for stateless query operators.