N, Anandhavelu
InteractiveIE: Towards Assessing the Strength of Human-AI Collaboration in Improving the Performance of Information Extraction
Mondal, Ishani, Yuan, Michelle, N, Anandhavelu, Garimella, Aparna, Ferraro, Francis, Blair-Stanek, Andrew, Van Durme, Benjamin, Boyd-Graber, Jordan
Learning template based information extraction from documents is a crucial yet difficult task. Prior template-based IE approaches assume foreknowledge of the domain templates; however, real-world IE do not have pre-defined schemas and it is a figure-out-as you go phenomena. To quickly bootstrap templates in a real-world setting, we need to induce template slots from documents with zero or minimal supervision. Since the purpose of question answering intersect with the goal of information extraction, we use automatic question generation to induce template slots from the documents and investigate how a tiny amount of a proxy human-supervision on-the-fly (termed as InteractiveIE) can further boost the performance. Extensive experiments on biomedical and legal documents, where obtaining training data is expensive, reveal encouraging trends of performance improvement using InteractiveIE over AI-only baseline.
CLAUSEREC: A Clause Recommendation Framework for AI-aided Contract Authoring
Aggarwal, Vinay, Garimella, Aparna, Srinivasan, Balaji Vasan, N, Anandhavelu, Jain, Rajiv
Contracts are a common type of legal document that frequent in several day-to-day business workflows. However, there has been very limited NLP research in processing such documents, and even lesser in generating them. These contracts are made up of clauses, and the unique nature of these clauses calls for specific methods to understand and generate such documents. In this paper, we introduce the task of clause recommendation, asa first step to aid and accelerate the author-ing of contract documents. We propose a two-staged pipeline to first predict if a specific clause type is relevant to be added in a contract, and then recommend the top clauses for the given type based on the contract context. We pretrain BERT on an existing library of clauses with two additional tasks and use it for our prediction and recommendation. We experiment with classification methods and similarity-based heuristics for clause relevance prediction, and generation-based methods for clause recommendation, and evaluate the results from various methods on several clause types. We provide analyses on the results, and further outline the advantages and limitations of the various methods for this line of research.