Mussabayev, Ravil
Boosting K-means for Big Data by Fusing Data Streaming with Global Optimization
Mussabayev, Ravil, Mussabayev, Rustam
K-means clustering is a cornerstone of data mining, but its efficiency deteriorates when confronted with massive datasets. To address this limitation, we propose a novel heuristic algorithm that leverages the Variable Neighborhood Search (VNS) metaheuristic to optimize K-means clustering for big data. Our approach is based on the sequential optimization of the partial objective function landscapes obtained by restricting the Minimum Sum-of-Squares Clustering (MSSC) formulation to random samples from the original big dataset. Within each landscape, systematically expanding neighborhoods of the currently best (incumbent) solution are explored by reinitializing all degenerate and a varying number of additional centroids. Extensive and rigorous experimentation on a large number of real-world datasets reveals that by transforming the traditional local search into a global one, our algorithm significantly enhances the accuracy and efficiency of K-means clustering in big data environments, becoming the new state of the art in the field.
Superior Parallel Big Data Clustering through Competitive Stochastic Sample Size Optimization in Big-means
Mussabayev, Rustam, Mussabayev, Ravil
This paper introduces a novel K-means clustering algorithm, an advancement on the conventional Big-means methodology. The proposed method efficiently integrates parallel processing, stochastic sampling, and competitive optimization to create a scalable variant designed for big data applications. It addresses scalability and computation time challenges typically faced with traditional techniques. The algorithm adjusts sample sizes dynamically for each worker during execution, optimizing performance. Data from these sample sizes are continually analyzed, facilitating the identification of the most efficient configuration. By incorporating a competitive element among workers using different sample sizes, efficiency within the Big-means algorithm is further stimulated. In essence, the algorithm balances computational time and clustering quality by employing a stochastic, competitive sampling strategy in a parallel computing setting.
Finetuning Large Language Models for Vulnerability Detection
Shestov, Alexey, Cheshkov, Anton, Levichev, Rodion, Mussabayev, Ravil, Zadorozhny, Pavel, Maslov, Evgeny, Vadim, Chibirev, Bulychev, Egor
This paper presents the results of finetuning large language models (LLMs) for the task of detecting vulnerabilities in source code. We leverage WizardCoder, a recent improvement of the state-of-the-art LLM StarCoder, and adapt it for vulnerability detection through further finetuning. To accelerate training, we modify WizardCoder's training procedure, also we investigate optimal training regimes. For the imbalanced dataset with many more negative examples than positive, we also explore different techniques to improve classification performance. The finetuned WizardCoder model achieves improvement in ROC AUC and F1 measures on balanced and imbalanced vulnerability datasets over CodeBERT-like model, demonstrating the effectiveness of adapting pretrained LLMs for vulnerability detection in source code. The key contributions are finetuning the state-of-the-art code LLM, WizardCoder, increasing its training speed without the performance harm, optimizing the training procedure and regimes, handling class imbalance, and improving performance on difficult vulnerability detection datasets. This demonstrates the potential for transfer learning by finetuning large pretrained language models for specialized source code analysis tasks.
Optimizing K-means for Big Data: A Comparative Study
Mussabayev, Ravil, Mussabayev, Rustam
This paper presents a comparative analysis of different optimization techniques for the K-means algorithm in the context of big data. K-means is a widely used clustering algorithm, but it can suffer from scalability issues when dealing with large datasets. The paper explores different approaches to overcome these issues, including parallelization, approximation, and sampling methods. The authors evaluate the performance of these techniques on various benchmark datasets and compare them in terms of speed, quality of clustering, and scalability according to the LIMA dominance criterion. The results show that different techniques are more suitable for different types of datasets and provide insights into the trade-offs between speed and accuracy in K-means clustering for big data. Overall, the paper offers a comprehensive guide for practitioners and researchers on how to optimize K-means for big data applications.
How to Use K-means for Big Data Clustering?
Mussabayev, Rustam, Mladenovic, Nenad, Jarboui, Bassem, Mussabayev, Ravil
K-means plays a vital role in data mining and is the simplest and most widely used algorithm under the Euclidean Minimum Sum-of-Squares Clustering (MSSC) model. However, its performance drastically drops when applied to vast amounts of data. Therefore, it is crucial to improve K-means by scaling it to big data using as few of the following computational resources as possible: data, time, and algorithmic ingredients. We propose a new parallel scheme of using K-means and K-means++ algorithms for big data clustering that satisfies the properties of a ``true big data'' algorithm and outperforms the classical and recent state-of-the-art MSSC approaches in terms of solution quality and runtime. The new approach naturally implements global search by decomposing the MSSC problem without using additional metaheuristics. This work shows that data decomposition is the basic approach to solve the big data clustering problem. The empirical success of the new algorithm allowed us to challenge the common belief that more data is required to obtain a good clustering solution. Moreover, the present work questions the established trend that more sophisticated hybrid approaches and algorithms are required to obtain a better clustering solution.
Strategies for Parallelizing the Big-Means Algorithm: A Comprehensive Tutorial for Effective Big Data Clustering
Mussabayev, Ravil, Mussabayev, Rustam
This study focuses on the optimization of the Big-means algorithm for clustering large-scale datasets, exploring four distinct parallelization strategies. We conducted extensive experiments to assess the computational efficiency, scalability, and clustering performance of each approach, revealing their benefits and limitations. The paper also delves into the trade-offs between computational efficiency and clustering quality, examining the impacts of various factors. Our insights provide practical guidance on selecting the best parallelization strategy based on available resources and dataset characteristics, contributing to a deeper understanding of parallelization techniques for the Big-means algorithm.