Mushtaq, Erum
FLamby: Datasets and Benchmarks for Cross-Silo Federated Learning in Realistic Healthcare Settings
Terrail, Jean Ogier du, Ayed, Samy-Safwan, Cyffers, Edwige, Grimberg, Felix, He, Chaoyang, Loeb, Regis, Mangold, Paul, Marchand, Tanguy, Marfoq, Othmane, Mushtaq, Erum, Muzellec, Boris, Philippenko, Constantin, Silva, Santiago, Teleńczuk, Maria, Albarqouni, Shadi, Avestimehr, Salman, Bellet, Aurélien, Dieuleveut, Aymeric, Jaggi, Martin, Karimireddy, Sai Praneeth, Lorenzi, Marco, Neglia, Giovanni, Tommasi, Marc, Andreux, Mathieu
Federated Learning (FL) is a novel approach enabling several clients holding sensitive data to collaboratively train machine learning models, without centralizing data. The cross-silo FL setting corresponds to the case of few ($2$--$50$) reliable clients, each holding medium to large datasets, and is typically found in applications such as healthcare, finance, or industry. While previous works have proposed representative datasets for cross-device FL, few realistic healthcare cross-silo FL datasets exist, thereby slowing algorithmic research in this critical application. In this work, we propose a novel cross-silo dataset suite focused on healthcare, FLamby (Federated Learning AMple Benchmark of Your cross-silo strategies), to bridge the gap between theory and practice of cross-silo FL. FLamby encompasses 7 healthcare datasets with natural splits, covering multiple tasks, modalities, and data volumes, each accompanied with baseline training code. As an illustration, we additionally benchmark standard FL algorithms on all datasets. Our flexible and modular suite allows researchers to easily download datasets, reproduce results and re-use the different components for their research. FLamby is available at~\url{www.github.com/owkin/flamby}.
Federated Alternate Training (FAT): Leveraging Unannotated Data Silos in Federated Segmentation for Medical Imaging
Mushtaq, Erum, Bakman, Yavuz Faruk, Ding, Jie, Avestimehr, Salman
Federated Learning (FL) aims to train a machine learning (ML) model in a distributed fashion to strengthen data privacy with limited data migration costs. It is a distributed learning framework naturally suitable for privacy-sensitive medical imaging datasets. However, most current FL-based medical imaging works assume silos have ground truth labels for training. In practice, label acquisition in the medical field is challenging as it often requires extensive labor and time costs. To address this challenge and leverage the unannotated data silos to improve modeling, we propose an alternate training-based framework, Federated Alternate Training (FAT), that alters training between annotated data silos and unannotated data silos. Annotated data silos exploit annotations to learn a reasonable global segmentation model. Meanwhile, unannotated data silos use the global segmentation model as a target model to generate pseudo labels for self-supervised learning. We evaluate the performance of the proposed framework on two naturally partitioned Federated datasets, KiTS19 and FeTS2021, and show its promising performance.
SSFL: Tackling Label Deficiency in Federated Learning via Personalized Self-Supervision
He, Chaoyang, Yang, Zhengyu, Mushtaq, Erum, Lee, Sunwoo, Soltanolkotabi, Mahdi, Avestimehr, Salman
Federated Learning (FL) is transforming the ML training ecosystem from a centralized over-the-cloud setting to distributed training over edge devices in order to strengthen data privacy. An essential but rarely studied challenge in FL is label deficiency at the edge. This problem is even more pronounced in FL compared to centralized training due to the fact that FL users are often reluctant to label their private data. Furthermore, due to the heterogeneous nature of the data at edge devices, it is crucial to develop personalized models. In this paper we propose self-supervised federated learning (SSFL), a unified self-supervised and personalized federated learning framework, and a series of algorithms under this framework which work towards addressing these challenges. First, under the SSFL framework, we demonstrate that the standard FedAvg algorithm is compatible with recent breakthroughs in centralized self-supervised learning such as SimSiam networks. Moreover, to deal with data heterogeneity at the edge devices in this framework, we have innovated a series of algorithms that broaden existing supervised personalization algorithms into the setting of self-supervised learning. We further propose a novel personalized federated self-supervised learning algorithm, Per-SSFL, which balances personalization and consensus by carefully regulating the distance between the local and global representations of data. To provide a comprehensive comparative analysis of all proposed algorithms, we also develop a distributed training system and related evaluation protocol for SSFL. Our findings show that the gap of evaluation accuracy between supervised learning and unsupervised learning in FL is both small and reasonable. The performance comparison indicates the representation regularization-based personalization method is able to outperform other variants.